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Abstract

Recently, graph neural networks (GNNs) have been shown
powerful capacity at modeling structural data. However,
when adapted to downstream tasks, it usually requires
abundant task-specific labeled data, which can be extremely
scarce in practice. A promising solution to data scarcity
is to pre-train a transferable and expressive GNN model
on large amounts of unlabeled graphs or coarse-grained
labeled graphs. Then the pre-trained GNN is fine-tuned on
downstream datasets with task-specific fine-grained labels.

In this paper, we present a novel Graph Matching based

GNN Pre-Training framework, called GMPT. Focusing on

a pair of graphs, we propose to learn structural correspon-

dences between them via neural graph matching, consisting

of both intra-graph message passing and inter-graph mes-

sage passing. In this way, we can learn adaptive represen-

tations for a given graph when paired with different graphs,

and both node- and graph-level characteristics are natu-

rally considered in a single pre-training task. The proposed

method can be applied to fully self-supervised pre-training

and coarse-grained supervised pre-training. We further pro-

pose an approximate contrastive training strategy to sig-

nificantly reduce time/memory consumption. Extensive ex-

periments on multi-domain, out-of-distribution benchmarks

have demonstrated the effectiveness of our approach. The

code is available at: https://github.com/RUCAIBox/GMPT.

1 Introduction

In the past few years, graph neural networks (GNNs)
have emerged as a powerful technical approach for graph
representation learning [9, 3]. By leveraging graph
structure as well as node and edge features, GNNs can
effectively learn low-dimensional representation vectors
for each node or the entire graph. However, to apply
GNNs to downstream applications, it usually requires
abundant task-specific labeled data, which can be ex-
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Figure 1: An example of neural graph matching and
comparison with existing studies of static graph repre-
sentations.

tremely scarce in practice. To alleviate the data scarcity
issue [16], pre-training GNNs [6, 7] has been proposed
as a promising solution. It first learns a transferable and
expressive GNN on a large number of unlabeled graphs
or coarse-grained labeled graphs. Then, the pre-trained
GNN is fine-tuned on downstream datasets with task-
specific labels.

For GNN pre-training, existing studies mostly focus
on the design of suitable tasks, such as graph structure
reconstruction [3, 6, 7], mutual information maximiza-
tion [21, 28, 17] and properties prediction [6]. Gener-
ally, these tasks can be classified into two main cate-
gories: (1) node-level tasks utilize node representations
to predict the localized properties in the graph (e.g.,
link prediction); (2) graph-level tasks focus on the entire
graph and learn graph representations when designing
the globalized optimization goal (e.g., graph’s property
prediction).

Given the two kinds of GNN pre-training tasks, it is
essential to combine node- and graph-level optimization
goals [6], since they capture the graph characteristics
in different views. Existing approaches either adopt a
two-stage approach arranging multi-level pre-training
tasks sequentially [6], or frame them in a multi-task
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learning manner [15]. In this way, each individual
pre-training task is not aware of all the optimization
goals at different levels, which might result in locally
optimal representations w.r.t. some specific level (e.g.,
node- or graph-level). Ideally, a good pre-training
task can capture node- and graph-level characteristics
simultaneously in order to derive more comprehensive
node (and graph) representations.

For this purpose, we attempt to design new GNN
pre-training tasks that are able to learn node- and
graph-level graph semantics in one single pre-training
task. Our solution is based on neural graph match-
ing [23, 13, 26], a neural approach to learning structural
correspondence among graphs. We present an illustra-
tive example of our idea in Figure 1. At each time, a
pair of two associated graphs (e.g., with the same la-
bels or augmented graphs) are given, and we evaluate
whether the two graphs have similar structural prop-
erties. As a major advantage, neural graph matching
naturally combines node-level correspondence (e.g., v1
to v2) and graph-level properties (e.g., whether contain-
ing shared substructure) when establishing their corre-
spondence. That is the major reason why we adopt it
as the GNN pre-training task. Another merit of this
approach is that a graph will correspond to different
representations when paired with different graphs. As
shown in this example, we will derive different represen-
tations for graph A when paired with graph A1 or A2,
since neural graph matching will enforce one graph to re-
fer to another graph’s information when learning graph
representations. Therefore, we call the learned repre-
sentations adaptive graph representations. As a com-
parison, existing graph-level pre-training tasks usually
adopt static graph representations.

To this end, in this paper, we propose a novel Graph
Matching based GNN Pre-Training method, named as
GMPT. The key contribution lies in a neural graph
matching module, where we pair two associated graphs
as input at each time. To learn structural correspon-
dences, we perform intra-graph as well as inter-graph
message passing. In this way, the representations of a
given graph are learned by referring to another paired
graph, which derives adaptive graph representations.
Such a method can capture both node- and graph-level
characteristics when learning the graph representations.
The proposed method can be applied to both fully self-
supervised and coarse-grained supervised pre-training
settings. In self-supervised setting, GNNs are optimized
by a graph matching-based contrastive loss. To accel-
erate the learning of graph pairs during pre-training,
we further proposed an approximate contrastive training
strategy to significantly reduce the time/memory con-
sumption, without loss of accuracy. While in supervised

setting, we design different supervised tasks according
to different coarse-grained labels.

In summarization, we design a new GNN pre-
training task based on neural graph matching, devoted
to adaptive graph representation learning by modeling
both node- and graph-level characteristics in a single
pre-training task. We also propose an approximate con-
trastive training strategy to reduce the time/memory
consumption. Extensive experiments on public out-of-
distribution benchmarks from multiple domains on vari-
ous GNN architectures have demonstrated the effective-
ness of our approach.

2 Related Work

In this section, we review the most related work about
pre-training graph neural networks and graph matching.

2.1 Pre-training Graph Neural Networks
Though graph neural networks are powerful tools to
characterize graph-structured data, they heavily rely
on fine-grained domain-specific labels while training,
which is usually scarce and difficult to obtain. To al-
leviate the above issues, pre-training for graph neural
networks has drawn much attention recently, which em-
powers GNNs to capture the structural and semantic
information of the input unlabeled graphs (or with few
coarse-grained labels), followed by several fine-tuning
steps on the downstream tasks of interest. Obviously,
developing effective supervised (self-supervised) signals
to guide GNNs to exploit structural and semantic prop-
erties on original graphs is at the heart. Generally, ex-
isting designed supervised signals can be classified into
two main categories. The first is called node-level tasks,
which aims at predicting localized properties utilizing
node representations, such as graph structure recon-
struction [3, 6, 7, 15, 11], localized attribute predic-
tion [6, 7] and node representation recovery [4]. Another
is called graph-level tasks, which defines globalized opti-
mization goal for the entire graph, such as graph prop-
erty prediction [6, 12] and mutual information maxi-
mization [21, 28, 17, 15, 27]. Our proposed framework
differs from the above approaches in the following two
aspects: learning node- and graph-level graph seman-
tics in one single pre-training task and adaptive graph
representations.

2.2 Graph Matching
Graph matching refers to establishing node correspon-
dences between two (or among multiple) graphs [1],
such that the similarity between the matched graphs
is maximized. Some researches focus on the accuracy
of the node correspondence, and regard graph matching
as a quadratic assignment programming (QAP) prob-
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Figure 2: Overall framework of our proposed graph matching-based GNN pre-training methods.

lem [14], which is NP-complete. Thus, researchers
mainly employ approximate techniques to seek inexact
solutions, such as spectral approximation [10], double-
stochastic approximation [2], and learning-based ap-
proaches [1, 29, 23]. While others care about the similar-
ity calculation between graphs. Early efforts are mainly
based on heuristic rules, such as minimal graph edit
distance [24] and graph kernel methods [8, 22]. With
the development of GNNs, recent work leverage mes-
sage passing techniques to explore neural-based graph
matching [13, 26]. In this work, we apply neural graph
matching for GNN pre-training, to learn adaptive graph
representations and encourage GNNs to integrate local-
ized and globalized domain-specific features.

3 The Proposed Method

In this section, we first introduce the notation and prob-
lem definition. Then we present the proposed graph
matching based GNN pre-training method GMPT for
both self-supervised setting and coarse-grained super-
vised setting. Our approach takes pairs of graphs as
input. With a carefully designed cross-graph message
passing mechanism, one graph can be adaptively en-
coded into different graph representations when paired
with different graphs. Figure 2 presents the overall ar-
chitecture of our proposed framework.

3.1 Notation and Problem Definition
A graph can be represented as G = (V, E ,X,E),
where V = {v1, v2, . . . , v|V|} denotes the node set, E ⊆
V × V denotes the edge set, X ∈ R|V|×dv and E ∈
R|E|×de represent the dv- and de-dimensional attribute
matrix for nodes and edges, respectively. Furthermore,

each graph is possibly associated with some label y
from a label set Y. Given a set of graphs with
labels {(G1, y1), (G2, y2), . . . , (GN , yN )}, graph neural
networks (GNNs) leverage graph structure as well as
node and edge features to learn a representation vector
for the entire graph hG, and further utilize hG to predict
the corresponding label y. A detailed preliminary of
GNNs is provided in Supplementary Material S.11.

In this work, we focus on pre-training GNNs:
GNNs that are initialized with pre-trained parameters
are fine-tuned according to various downstream tasks.
Given the defined graph learning task, we consider two
kinds of GNN pre-training paradigms based on whether
graph labels are used or not during pre-training: self-
supervised setting (without graph labels) and supervised
setting (with graph labels).

3.2 Self-supervised Pre-training
We have no available labeled data for pre-training in
self-supervised setting. The pre-training task is to
evaluate whether a pair of augmented graph views
are generated based on the same graph. We adopt
contrastive learning to construct the learning objective
and name our approach in this setting as GMPT-CL.

3.2.1 Graph Representation Learning via
Graph Matching We first present how to learn graph
representations via graph matching.

Graph augmentation and encoding. Given a list
of n graph examples, we first apply stochastic data

1Please refer to: https://github.com/RUCAIBox/GMPT/blob/

main/paper/supplementary_material_gmpt.pdf
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augmentation to transform any given graph example
into two correlated views randomly (2n views in total).
We consider various augmentation techniques, including
node/edge perturbation [28], subgraph sampling [28],
diffusion [5], and adaptive methods [30]. The selection
of graph augmentation techniques depends on the actual
data domain [28]. To pre-train an expressive GNN
encoder, we consider whether a pair of graph views
denoted by G̃1 and G̃2 are matched or not based on
their graph representations. Specially, we first apply
the GNN encoder to obtain node representations in

the two graph views. Let h
(1)
s and h

(2)
t denote the

representations of node s from G̃1 and node t from G̃2,
respectively.

Neural graph matching. Following recent progress in
neural graph matching [13, 23], we incorporate message
passing within a graph (called intra-graph message) and
between a pair of graphs (called inter-graph messages).
Given a intra-graph node pair 〈s, t〉 and a inter-graph
node pair 〈s′, t′〉, we define the two kinds of message
passing mechanisms formally as:

ms→t = MSGintra

(
h(1)
s ,h

(1)
t , est

)
,(3.1)

µs′→t′ = MSGinter

(
h
(1)
s′ ,h

(2)
t′

)
,(3.2)

where ms→t and µs′→t′ are intra-graph and inter-graph
messages, respectively. Intra-graph message passing can
be defined in a similar way following standard GNN
architectures, like GIN [25]. While for MSGinter, we
adopt a cross-graph attention mechanism as:

µs′→t′ = as′→t′ · h(1)
s′ ,

where as′→t′ =
exp(sim(h

(1)

s′ ,h
(2)

t′ ))∑
k∈G̃2

exp(sim(h
(1)

s′ ,h
(2)
k ))

and sim(·) is

a similarity function, such as dot product and cosine
similarity. The above attention mechanism allows an
adaptive message exchange between the paired graphs.
Intuitively, messages passed between similar substruc-
tures of graphs will have higher attention weights. Here,
we normalize the attention weights of messages from
the same source node, which means

∑
t′ as′→t′ = 1.

Besides, it is also optional to normalize the atten-
tion weights of messages to the same target nodes
(
∑

s′ as′→t′ = 1).

Match enhanced graph representations. After
passing intra-graph messages from nodes’ neighbors
(denoted by Nintra) and inter-graph messages from all
the nodes of another graph (denoted by Ninter), we
aggregate the messages together and update to obtain
the contextual node features Z. For a node t, we update

its original representation ht as:

zt = Update

(
ht,

∑
s∈Nintra

ms→t,
∑

s′∈Ninter

µs′→t

)
,

(3.3)

where we use the sum operation for aggregation. Fi-
nally, we obtain the entire graph’s adaptive representa-
tion zG by employing a permutation-invariant function
READOUT to pool contextual node features:

zG = READOUT ({zv|v ∈ V}) .(3.4)

Note that when involved in different pairs, a given graph
will correspond to different representations in our ap-
proach. It is a key merit for subsequent pre-training
tasks, since it can adaptively capture structural corre-
spondences instead of using static graph representations
as in previous studies [6, 28].

3.2.2 Contrastive Learning with Adaptive
Graph Representations Contrastive learning is a
commonly used technique to learn with augmented
graph views in pairs [28]. It aims to increase similarity
scores for positive pairs and decrease similarity scores
for negative pairs. However, existing graph contrastive
learning methods mainly adopt static graph represen-
tations [28, 5, 30], where node-level interaction across
graphs is not explicitly modeled in this process. As a
comparison, given a pair of graph views, we first apply
the neural graph matching technique (Section 3.2.1) to
characterize inter-graph interaction, and then construct
the contrastive loss based on the adaptive graph repre-
sentations.

Formally, given a positive pair (G̃i, G̃j), we firstly
adaptively encode them into contextual graph represen-
tations zG̃i

and zG̃j
(Eqn. (3.4)), and then formalize

the contrastive loss below:

(3.5) `i,j = − log
exp (si,j/τ)∑
k 6=i exp (si,k/τ)

,

where si,j = sim(zG̃i
, zG̃j

) and τ is a temperature
parameter. In practice, we usually have a batch of graph
views, and we enumerate all the possible pairs of graphs
in a batch for this loss in the denominator of Eqn. (3.5).

Although the above contrastive loss is also defined
at the graph level (whether two views are augmented
from the same graph), the derived graph representa-
tions zG̃i

and zG̃j
are enhanced with inter-graph node

interaction via neural graph matching. As such, opti-
mizing `i,j will encourage GNNs to capture both node-
and graph-level characteristics in graph representations.
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3.2.3 Approximate Contrastive Training A ma-
jor issue with graph matching is it incurs a quadratic
time and space cost in terms of the number of nodes.
Here, we propose an approximate contrastive training
strategy to improve algorithm efficiency.

Complexity analysis. We consider the setting with a
mini-batch of n graphs. As mentioned before, we would
generate 2n augmented graph views for graph matching
and contrastive learning. Typically, for a mini-batch of
n graphs, GMPT-CL considers 2n × 2n times of graph
comparisons (two augmented views each graph) in total.
Each comparison performs a node-to-node similarity
calculation (refer to Eqn. (3.2)), taking an additional

cost of O(m2 · d) time and space, where m =
∑2n

i=1 |Vi|
denotes the total number of nodes in 2n graph views
and d is the dimensionality of representation vectors.

Approximate calculation. In order to reduce time
and memory consumption, the key idea is to perform
an approximate calculation of the proposed contrastive
loss (Eqn. (3.5)): we sample q out of 2n graph views
to contrast with all the other views (q × 2n times
comparisons totally). In this way, the additionally
expected time complexity can be reduced to O( q

2n ·
m2 · d). For a further reduction of space complexity,
we adopt the gradient accumulation technique. For
each time of sampling, we perform 1 × 2n times of
comparison. After calculating the contrastive loss, the
model backpropagates prediction error and calculates
the gradients, but doesn’t update model parameters
immediately. Instead, the gradients are accumulated
until all the q samples are calculated. In this way,
the sampled q graphs only require an additional space
complexity of O

(
1
2n ·m

2 · d
)
.

Theoretical analysis. We provide a theoretical anal-
ysis to reveal the connection between GMPT-CL with
approximate contrastive training and mutual informa-
tion maximization. Firstly, we show that,

Lemma 3.1. Minimizing Eqn. (3.5) is equivalent to
maximizing a lower bound of the mutual information be-
tween the latent representations of two views of graphs.

Furthermore, we show that,

Lemma 3.2. Optimizing Eqn. (3.5) with approximate
contrastive training algorithm has the same optimization
lower bound as originally in expectation.

Thus we can see that the proposed approximate con-
trastive training fits the formulation of the InfoNCE
loss [19, 18] in expectation. The proofs are provided
in Supplementary Material S.3.

Empirically, experiments in Section 4.3 will show
that performances of the fine-tuned GNNs on down-

stream tasks don’t drop (even improve) with the pro-
posed approximate contrastive training. The overall
pre-training algorithm of GMPT-CL in one mini-batch
is provided in Supplementary Material S.3.

3.3 Supervised Pre-training
Besides a large number of unlabeled graphs for self-
supervised pre-training, sometimes we can obtain
graphs with coarse-grained labels. Different from elabo-
rately created fine-grained labels, coarse-grained labels
have a relatively weak correlation with downstream task
goals, but can be obtained in an easier way. For ex-
ample, in molecular property prediction, we can easily
collect the properties of molecules that have been ex-
perimentally measured so far [6].

In supervised pre-training setting, we pre-train
GNNs on graphs with coarse-grained labels, and then
the pre-trained GNNs are fine-tuned according to fine-
grained labels in downstream tasks. Note that coarse-
grained labels used for supervised pre-training are not
the real labels of downstream tasks. Based on whether
coarse-grained labels are continuous or discrete, we
propose two variants of GMPT in supervised setting,
named as GMPT-Sup and GMPT-Sup++, respec-
tively.

Continuous labels. Labels with continuous proper-
ties can be regarded as real-value vectors. We assume
that similar pairs of graphs also correspond to similar la-
bels. Based on this consideration, we propose GMPT-
Sup to learn the similarities between graphs via graph
matching module, and then minimize the difference be-
tween the learned similarity and the actual label similar-
ity. Given a pair of graphs G1 and G2 and their coarse-
grained labels y1 and y2, we firstly obtain their adaptive
graph representations zG1

and zG2
as Eqn. (3.4). Then

we define the loss function as `c = MSE(sp, sg), where
sp = sim(y1,y2), sg = sim(zG1 , zG2), and MSE(·, ·) de-
notes the standard mean squared error loss. This loss
drives the representation similarity of two graphs to be
close to their label similarity.

Discrete labels. For discrete labels, we do not
enforce a direct comparison of the two graphs in a pair.
Instead, we construct a classification-based approach
GMPT-Sup++ to associated graph representations
with suitable coarse-grained labels. For a given pair of
graphs G1 and G2 (encoded by graph matching module
into zG1 and zG2), we jointly predict the corresponding
coarse-grained labels y1 and y2. The loss for discrete
labels `d can be calculated as,

`d =
∑
k=1,2

BCE(yk,Wk · zGk
+ bk),
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Table 1: Statistics of the datasets. PT denotes Pre-
Training and FT denotes Fine-Tuning. * denotes the
total number of tasks for the eight downstream datasets.

Dataset Bio Chem

#(sub)graphs for self-supervised PT 307K 2, 000K
#(sub)graphs for supervised PT/FT 88K 456K
#Coarse-grained labels for PT 5, 000 1, 310
#Downstream FT tasks 40 678*

where BCE(·, ·) denotes the popular binary cross-
entropy loss, and y1 and y2 are vectorized representa-
tions of labels y1 and y2, respectively. Although the
loss of the two graphs in a pair is calculated sepa-
rately, their representations are obtained from the graph
matching module (e.g., cross-graph message passing in
Eqn. (3.2)).

4 Experiments

In this section, we conduct extensive experiments to ver-
ify the effectiveness of our proposed methods in both
self-supervised and supervised settings. Moreover, we
also give an in-depth analysis of training strategy and
transferability. Additional experiments on key parame-
ters sensitivity analysis are provided in Supplementary
Material S.5.4.

4.1 Experimental Setup

4.1.1 Datasets We conduct experiments on two
public out-of-distribution (sub)graph classification
benchmarks from different domains, namely Bio and
Chem [6]. We strictly adopt the same way of split-
ting and pre-processing of these benchmarks as previous
work [6]. Dataset statistics are summarized in Table 1.
Detailed descriptions of the datasets are given in Sup-
plementary Material S.5.1.

4.1.2 Baselines We compare our pre-training meth-
ods with the following representative GNN pre-training
methods:
− Infomax [21] maximizes the mutual information
between patch representations and corresponding
high-level summaries of graphs.
− EdgePred [3] directly predicts the connectivity of
node pairs, a.k.a., link prediction task.
− ContextPred [6] uses subgraphs to predict their
surrounding graph structures.
− AttrMasking [6] predicts nodes’ or edges’ at-
tributes, which are randomly masked.
− GraphCL [28] contrast the static representations of
augmented views and judge whether they are generated

from the same graph.
− L2P-GNN [15] utilizes meta-learning to alleviate
the divergence between multi-task pre-training and
fine-tuning objectives.
− PropPred [6] predicts the coarse-grained labels of
graphs in the pre-training datasets.

Among the baselines, PrepPred is designed for su-
pervised pre-training setting, while others are targeted
at self-supervised pre-training setting. Moreover, re-
sults of the non-pre-trained model are also reported.

4.1.3 Parameter Settings To enhance the repro-
ducibility, we elaborately present the implementation
details as follows. Detailed hyper-parameters for GNN
architecture and training are provided in Supplemen-
tary Material S.5.2.

GNN architecture. We mainly experiment on Graph
Isomorphism Networks (GINs) [25], the most expres-
sive GNN architecture for graph-level prediction tasks.
We also experiment with other popular architectures:
GCN [9], GraphSAGE [3] and GAT [20]. We select the
same GNN hyper-parameters as previous works [6, 15].
For the proposed graph matching methods, we adopt
dot production for the sim(·) function and select τ =
0.07 in Eqn. (3.5). We utilize a multiple layer percep-
tron (MLP) as function of Update in Eqn. (3.3).

Pre-training and fine-tuning settings. Results of
baselines on different datasets are directly taken if they
have been reported literaturely. For the other method,
we pre-train the models with a learning rate of 0.001,
and fine-tune the GNNs with a learning rate tuned in
{0.01, 0.001, 0.0001} for all the methods. We report
the ROC-AUC for both datasets. The downstream
experiments are run with 10 random seeds, and we
report the mean and standard deviation of the metrics.

4.2 Performance Comparison

4.2.1 Self-supervised Setting Table 2 presents the
performance comparison in self-supervised pre-training
setting between GMPT-CL and the baselines.

The proposed pre-training method GMPT-CL
achieves the best performance 72.53% over all the com-
pared methods on Bio. with the most expressive GNN
architecture GIN. On Chem dataset, we also notice that
GMPT-CL gains the best results (71.5%) compared to
all the baselines.

Applying GMPT-CL on currently popular GNN
architectures, as shown in Table 2, GMPT-CL achieves
the best macro-average result (71.13%) over all the
compared baseline methods. In particular, we can see
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Table 2: Evaluation in self-supervised setting. We test ROC-AUC (%) performance using different pre-training
methods. Besides, performances with different GNN architecture on Bio are also presented. The macro-average
results over all GNN architectures on Bio, and results of GIN over all subtasks on Chem are also reported. In
L2P-GNN, GNN is fine-tuned with a parameterized global pooling layer, while others use average pooling.

Pre-training methods
Bio

Chem
GCN GraphSAGE GAT GIN Average

w/o pre-training 63.20 ± 1.00 65.70 ± 1.20 68.20 ± 1.10 64.80 ± 1.00 65.48 67.0
Infomax 62.83 ± 1.22 67.21 ± 1.84 66.94 ± 2.61 64.10 ± 1.50 65.27 70.3

EdgePred 63.18 ± 1.12 66.05 ± 0.78 65.72 ± 1.17 65.70 ± 1.30 65.16 70.3
ContextPred 62.81 ± 1.87 66.47 ± 1.27 67.86 ± 1.19 65.20 ± 1.60 65.59 71.1
AttrMasking 62.40 ± 1.35 63.32 ± 1.01 61.72 ± 2.70 64.40 ± 1.30 62.96 70.9

GraphCL 67.05 ± 1.16 71.53 ±0.46 65.68 ± 3.98 67.88 ± 0.85 68.04 70.8
L2P-GNN 66.48 ± 1.59 69.89 ± 1.63 69.15 ± 1.86 70.13 ± 0.95 68.91 70.4

GMPT-CL 70.65 ± 0.53 70.29 ± 0.21 71.07 ± 0.14 72.53 ± 0.42 71.13 71.5

Table 3: Evaluation in supervised setting. We report
ROC-AUC (%) performance on Bio and Chem using
different supervised pre-training methods with GIN.

Pre-training methods Bio Chem

w/o pre-training 64.8 ± 1.0 67.0
PropPred 69.0 ± 2.4 70.0

GMPT-Sup 70.84 ± 0.59 –
GMPT-Sup++ 70.73 ± 0.42 70.4

that GMPT-CL is powerful even with less expressive
GNN architectures like GCN or GAT, which brings
3.60% and 1.92% absolutely gains compared to the best
baseline, respectively.

In sum, we make the following observations.
(1) On average, the proposed GMPT-CL yields the

best performance on benchmarks of different domains
(72.53% on Bio and 71.5% on Chem). As GMPT-
CL is a hybrid-level pre-training task, it encourages
GNNs to capture both localized and globalized domain-
specific semantics. Graph matching module of GMPT-
CL can generate adaptive graph representations, in
which shared substructures are enhanced.

(2) Pre-training GNNs with a large amount of un-
labeled data is clearly helpful to downstream tasks,
as GMPT-CL brings 6.69% and 4.5% absolutely gains
compared to non-pre-trained models on the macro-
average results over datasets of two domains, respec-
tively.

4.2.2 Supervised Setting Table 3 presents the per-
formance comparison between GMPT-Sup, GMPT-
Sup++, and the baselines (i.e., non-pre-trained GIN and
PropPred) in supervised pre-training setting. Though

coarse-grained labels in Bio datasets are multi-hot vec-
tors, we still view them as continuous properties in
GMPT-Sup. While coarse-grained labels in Chem
datasets contain plenty of missing values. As similarity
over missing values is hard to define, GMPT-Sup is not
a suitable method for labels with missing values, and
we only report the result of GMPT-Sup++ on Chem.

The compared baseline PropPred always outper-
forms the non-pre-trained method, reflecting that GNNs
pre-trained on coarse-grained labels can characterize
domain-specific semantics. Compared with PropPred,
which encodes graphs into static representations with
a graph-level pre-training task, the proposed hybrid-
level methods GMPT-Sup and GMPT-Sup++ generate
adaptive graph representations (Section 3.2.1). Con-
sequently, we can see that the proposed methods
achieve the best performances on Bio and Chem, re-
spectively, demonstrating the effectiveness of our pre-
training methods. Besides, we notice that GMPT-Sup
outperforms GMPT-Sup++ slightly on Bio dataset. A
possible reason is that directly predicting every single
property of coarse-grained labels (as GMPT-Sup++)
may cause overfitting and limit the transferability of
the pre-trained model, especially when coarse-grained
labels lack precious domain-specific semantics.

4.3 Training Strategy Analysis
As mentioned above, we propose an approximate con-
trastive training strategy to reduce the time and space
consumption of GMPT-CL and the corresponding the-
oretical analysis about time and memory complexity
can be found in In Section 3.2.3. Here we conduct de-
tailed experiments to show how the fine-tuned GNNs’
performance is affected by the batch size n and num-
ber of sampled views q, and what’s the actual running
time/memory when the proposed approximate training
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Figure 3: Tuning of approximate contrastive train-
ing with different numbers of sampled views on Bio
dataset. (a) Performance with different batch sizes. (b)
Time/Memory Consumption with batch size 32. Labels
on the histogram indicate memory consumption.

strategy is applied.

4.3.1 Performance Comparison w.r.t. Batch
Size and the Number of Sampled Views We pre-
train GIN models in different batch sizes n ∈ {4, 8, 16}
and numbers of sampled views q ∈ {1, 2, 4, 8, 16, 32},
and compare the fine-tuned model’s performance on
downstream dataset of Bio. Note that for a certain
batch size n, the maximum number of sampled views
is q = 2n (totally 2n views).

As Figure 3(a) shows, with different batch sizes
and number of sampled views, our method can reach
no less than 69% ROCAUC performance. We no-
tice that applying approximate contrastive training usu-
ally improves the performance of GMPT-CL. Generally,
GMPT-CL reaches the best performance when the num-
ber of sampled views q = 4. We speculate that the per-
formance gain comes from the randomness introduced
by contrastive approximate training. Besides, we find
that even with a small sampling number q = 1, our
method can still have competitive performances.

4.3.2 Time and Memory Consumption w.r.t.
the Number of Sampled Views Here, we take an
intuitive look at the actual time and space consumption
of the proposed approximate contrastive training strat-
egy. As Figure 3(b) shows, we find that as q decreases,
the training time of GMPT-CL per epoch also decreases,
which verifies that choosing a relatively small q can dra-
matically reduce the training time of GMPT-CL. Be-
sides, we find that the memory consumption doesn’t
change a lot with different choices of q, verifying that
the space complexity doesn’t affect much by q.

In summary, we suggest adopting the proposed
approximate contrastive training strategy when pre-
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Figure 4: Analysis of transferability for (a) L2P-GNN
and (b) GMPT-CL over 40 out-of-distribution subtasks
of Bio. “PT” denotes as “pre-training”. The green line
indicates the borderline. The purple line indicates the
worst negative transfer across the 40 subtasks.

training GNNs with GMPT-CL, which has been shown
to reduce the time/space consumption and gain a slight
performance increasing. For the choice of the number
of sampled views q with the batch size n, we suggest to
select a relative small q (i.e., 4 ≤ q ≤ n).

4.4 Transferability Analysis
Out-of-distribution (OOD) problem widely exists in
real-world applications, meaning that graphs in the
training set are structurally very different from graphs
in the test set [6]. Existing study shows that improp-
erly designed GNN pre-training tasks may cause seri-
ous negative transfer. Thus, we analyze the proposed
GMPT-CL and the best baseline L2P-GNN to analyze
the transfer status over the individual subtasks of out-
of-distribution datasets. The left and up area indicates
positive transfer, and the right and bottom area in-
dicates negative transfer. As shown in Figure 4, we
can see that compared to the best baseline L2P-GNN,
the proposed GMPT-CL has less negative transfer cases
(12 v.s. 17), as well as a slighter negative transfer ex-
tent (−0.07 v.s. −0.13). Besides we can see that GNN
pre-trained by GMPT-CL gets AUC result > 0.5 on all
downstream subtasks of Bio. All the observations above
show the good transferability of the proposed GMPT-
CL method.

5 Conclusion

In this work, we propose GMPT, a general graph
matching-based GNN pre-training framework for both
self-supervised pre-training and coarse-grained super-
vised pre-training. By structuralized neural graph
matching module, we generate adaptive representations
for the matched graphs, encouraging GNNs to learn
both globalized and localized domain-specific seman-
tics in a single pre-training task. We also propose ap-
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proximate contrastive training strategy, which signifi-
cantly reduces the time/memory consumption brought
by the graph matching module. Extensive experiments
on multi-domain out-of-distribution benchmarks show
the effectiveness and transferability of our method.

Besides GMPT, more hybrid-level GNN pre-
training tasks can be explored in the future. In ad-
dition, we will also consider generalizing our framework
to more complicated graph structures (e.g. dynamic
graphs, knowledge graphs, and heterogeneous graphs).
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