Cash-out User Detection based on Attributed Heterogeneous Information Network with a Hierarchical Attention Mechanism

Binbin Hu¹, Zhiqiang Zhang², Chuan Shi¹, Jun Zhou², XiaoLong Li², Yuan Qi² ¹Beijing University of Posts and Telecommunications, Beijing, China ²Ant Financial, Hangzhou, Zhejiang, China

• Credit Payment Services : such as offline credit card services in commercial banks and online credit payments in internet financial institutions.

Cash-out Fraud : pursue cash gains with illegal or insincere means, e.g., through buying pre-paid cards or other goods then reselling them.

Cash-out User Detection : predict whether a user will do cash-out transactions or not in the future.

Conventional solutions

- First perform subtle feature engineering for each user
- then a classifier (e.g., tree based model or neural network) is trained based on these features.
- Seldom fully exploit the interaction relations \rightarrow Limited prediction ability

Integrate more auxiliary information

- The fund transfer relation among users
- The login relation between users and devices
- The transaction relation between users and merchants
- Abundant attribute information

Attributed Heterogeneous information network is a promising way to integrate auxiliary data.

<

Attributed Heterogeneous Information Network (AHIN)

- Include multiple types of nodes or links and
 - rich attribute information
- Flexibly characterize heterogeneous data
- Contain rich semantics
- Meta-path
 - A relation sequence connecting two objects in HIN
 - Extract structural features
 - Embody path semantics

(a) Scenario of credit payment ser- (b) Network schema and vice meta-path examples

Contributions

- First study the cash-out users detection problem, which is a very important and widely existing problem in financial fraud field
 Propose to model the cash-out user detection problem as a classification problem in AHIN which is constituted by different types of objects and their rich interactions in the scenario of credit payment service
 Propose a novel model HACUD to solve the problem with meta-path based
 - neighbors and a hierarchical attention mechanism
- Extensive experiments on two real datasets illustrate the best performance of the proposed HACUD

Observations in real data

Figure 3: The lifting percentages of cash-out rate in users with different amount of cash-out neighbors against users without any cash-out neighbor in two meta-paths.

Different meta-path based neighbors have different impacts on users.

HACUD

Hierarchical Attention mechanism based Cash-out User Detection model (HACUD)

HACUD

User Features Feature Attention Path Attention Features of Path ρ_1 based Neighbors Loss Features of Path ρ . based Neighbors Prediction ature Fusior User Features \mathbf{x}_u Features of Path ρ_1 based Neighbors $\mathbf{\mathbf{f}}_{u}^{\rho_{1}}$ Features of Path ρ_n based Neighbors Meta-Path based Feature Fusion Neighbors Aggregation

Meta-path based Neighbors

Giving a user u in an AHIN, the meta-path based neighbors is defined as the set of aggregate neighbors under the given meta-path for the user u in the AHIN.

Aggregation

$$\mathbf{x}_{u}^{\rho} = \sum_{j \in \mathcal{N}_{u}^{\rho}} w_{uj}^{\rho} * \mathbf{x}_{j},$$

Feature Fusion

Project the original sparse features

 $\mathbf{h}_u = \mathbf{W}\mathbf{x}_u + \mathbf{b}, \quad \mathbf{h}_u^{\rho} = \mathbf{W}^{\rho}\mathbf{x}_u^{\rho} + \mathbf{b}^{\rho},$

Fuse the latent representations

 $\mathbf{f}_{u}^{\rho} = \operatorname{ReLU}(\mathbf{W}_{F}^{\rho}g(\mathbf{h}_{u},\mathbf{h}_{u}^{\rho}) + \mathbf{b}_{F}^{\rho}).$

Hierarchical Attention Model

Different preferences over the features based on different meta-paths as well as attribute information

Feature Attention

score

Attention $v_u^{\rho} = \operatorname{ReLU}(\mathbf{W}_f^1[\mathbf{h}_u;\mathbf{f}_u^{\rho}] + \mathbf{b}_f^1),$ $\boldsymbol{\alpha}_{u}^{\rho} = \operatorname{ReLU}(\mathbf{W}_{f}^{2}\boldsymbol{v}_{u}^{\rho} + \mathbf{b}_{f}^{2}),$

Softmax

$$\hat{\alpha}_{u,i}^{\rho} = \frac{\exp(\alpha_{u,i}^{\rho})}{\sum_{j=1}^{K} \exp(\alpha_{u,j}^{\rho})}.$$

Apply $\mathbf{f}_{\mu}^{\rho} = \hat{\boldsymbol{\alpha}}_{\mu}^{\rho} \bigodot \mathbf{f}_{\mu}^{\rho}$ **Path Attention**

Attention $\beta_{u,\rho} = \frac{1}{5}$ score

Apply

$$\frac{\exp(\mathbf{z}^{\rho \mathrm{T}} \cdot \widetilde{\mathbf{f}}_{u}^{C})}{\sum_{\rho' \in \mathcal{P}} \exp(\mathbf{z}^{\rho' \mathrm{T}} \cdot \widetilde{\mathbf{f}}_{u}^{C})},$$

 $\mathbf{e}_u = \sum_{\rho \in \mathcal{P}} \beta_{u,\rho} * \widetilde{\mathbf{f}}_u^{\rho},$

2

HACUD

<

Model Learning

Multi-layer Perceptron

$$\mathbf{z}_u = \operatorname{ReLU}(\mathbf{W}_L \cdots \operatorname{ReLU}(\mathbf{W}_1 \mathbf{e}_u + \mathbf{b}_1) + \mathbf{b}_L),$$

Prediction

 $p_u = \operatorname{sigmoid}(\mathbf{w}_p^T \mathbf{z}_u + b_p).$

Loss

 $\mathcal{L}(\Theta) = \sum_{\langle u, y_u \rangle \in \mathcal{D}} (y_u \log(p_u) + (1 - y_u) \log(1 - p_u)) + \lambda ||\Theta||_2^2,$

<

Discussion

MCRec

Flexibility

Flexible framework to leverage structure and attribute information through capturing multiple aspects in AHIN

Scalability

Compared to traditional network embedding methods (SDNE, Structure2vec), which represent nodes via their context (e.g., adjacency matrix), our method is more suitable for large-scale networks

Dynamics

For a new user which never appears in training set, the proposed model can also learn the representation through his/her meta-path based neighbors in networks.

Datasets

Experiments

Ten Days Dataset

Contains 1.88 million users ranging from 2018/03/21 to 2018/03/31 for training **One Month Dataset**

Contains 5.16 million users ranging from 2018/03/01 to 2018/03/31 for training

For both datasets, we predict the cash-out probability of users in 2018/05/01 (around 0.17 million users).

Metrics

$$AUC = \frac{\sum_{u \in \mathcal{U}^+} rank_u - \frac{|\mathcal{U}^+| \times (|\mathcal{U}^+|+1)}{2}}{|\mathcal{U}^+| \times |\mathcal{U}^-|}.$$

AHIN

- #users 56.75 millions
- #merchants 0.51 millions
- #fund transfer relations 77.40 millions
- #transaction relations 20.64 millions
- #attributes 123

Table 1: Selected meta-paths and meta-path based neighbors statistics.

Meta_paths	#Neighbors			
Wieta-patits	(Min / Max / Avg.)			
User-(transaction) - Merchant-(transaction)-User	1 / 16860 / 309			
User-(fund transfer) -User	1 / 26235 / 150			
User-(transaction) - Merchant	1 / 81 / 4			

Table 2: Results of effectiveness experiments on two datasets w.r.t. the dimension of latent representation d. A larger value indicates a better performance.

	AUC							
Algorithm	Ten Days Dataset			One Month Dataset				
	d = 16	d = 32	d = 64	d = 128	d = 16	d = 32	d = 64	d = 128
Node2vec	0.5893	0.5913	0.5926	0.5930	0.5980	0.6963	0.6009	0.6021
Metapath2vec	0.5914	0.5903	0.5917	0.5920	0.6005	0.5976	0.5995	0.5983
Node2vec + Feature	0.6455	0.6464	0.6510	0.6447	0.6541	0.6561	0.6607	0.6518
Metapath2vec + Feature	0.6456	0.6429	0.6469	0.6485	0.4850	0.6552	0.6523	0.6545
Structure2vec	0.6537	0.6556	0.6598	0.6545	0.6641	0.6632	0.6657	0.6678
GBDT	0.6389	0.6389	0.6389	0.6389	0.6467	0.6467	0.6467	0.6467
$GBDT_{Struct}$	0.6948	0.6948	0.6948	0.6948	0.6968	0.6968	0.6968	0.6968
HACUD	0.7066	0.7115	0.7056	0.7049	0.7132	0.7160	0.7109	0.7154

Effects of Hierarchical Attention

Figure 4: Performance comparison of hierarchical attention *w.r.t.* the dimension of latent representation *d*.

Figure 5: Performances comparison on different meta-paths and corresponding attention values.

The hierarchical mechanism is able to better utilize the user feature and features generated by meta-paths

the corresponding attentions are positively correlated (i.e., important meta-paths tend to attract more attentions)

Impact of Different Meta-paths (Ten Days Dataset)

(1) M1 : user feature only;
(2) M2 : user feature + UMU;
(3) M3 : user feature + UMU + UU;
(3) M4 : user feature + UMU + UU + UM

Impact of parameter λ (Ten Days Dataset)

we first study the cash-out user detection problem under the AHIN framework and propose a novel HACUD model

we design a hierarchical attention mechanism to model user preferences towards attributes and meta-paths

extensive experiments for the cash-user detection task demonstrate the effectiveness of our model

