
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/325420173

ANE: Network Embedding via Adversarial Autoencoders

Conference Paper · January 2018

DOI: 10.1109/BigComp.2018.00019

CITATIONS

5
READS

166

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Regulated Transformer Rectifier Unit Design for Boeing-787 View project

Binbin Hu

Beijing University of Posts and Telecommunications

20 PUBLICATIONS 309 CITATIONS

SEE PROFILE

Chuan Shi

Shanghai Institutes for Biological Sciences

101 PUBLICATIONS 1,258 CITATIONS

SEE PROFILE

All content following this page was uploaded by Binbin Hu on 15 April 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/325420173_ANE_Network_Embedding_via_Adversarial_Autoencoders?enrichId=rgreq-4981955a9cbe2e2328c7b7cb8d7b4610-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyMDE3MztBUzo3NDc5MDA2MzYyNTAxMTZAMTU1NTMyNDgxNTU5OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/325420173_ANE_Network_Embedding_via_Adversarial_Autoencoders?enrichId=rgreq-4981955a9cbe2e2328c7b7cb8d7b4610-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyMDE3MztBUzo3NDc5MDA2MzYyNTAxMTZAMTU1NTMyNDgxNTU5OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Regulated-Transformer-Rectifier-Unit-Design-for-Boeing-787?enrichId=rgreq-4981955a9cbe2e2328c7b7cb8d7b4610-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyMDE3MztBUzo3NDc5MDA2MzYyNTAxMTZAMTU1NTMyNDgxNTU5OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-4981955a9cbe2e2328c7b7cb8d7b4610-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyMDE3MztBUzo3NDc5MDA2MzYyNTAxMTZAMTU1NTMyNDgxNTU5OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Binbin_Hu5?enrichId=rgreq-4981955a9cbe2e2328c7b7cb8d7b4610-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyMDE3MztBUzo3NDc5MDA2MzYyNTAxMTZAMTU1NTMyNDgxNTU5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Binbin_Hu5?enrichId=rgreq-4981955a9cbe2e2328c7b7cb8d7b4610-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyMDE3MztBUzo3NDc5MDA2MzYyNTAxMTZAMTU1NTMyNDgxNTU5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Beijing_University_of_Posts_and_Telecommunications?enrichId=rgreq-4981955a9cbe2e2328c7b7cb8d7b4610-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyMDE3MztBUzo3NDc5MDA2MzYyNTAxMTZAMTU1NTMyNDgxNTU5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Binbin_Hu5?enrichId=rgreq-4981955a9cbe2e2328c7b7cb8d7b4610-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyMDE3MztBUzo3NDc5MDA2MzYyNTAxMTZAMTU1NTMyNDgxNTU5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chuan_Shi9?enrichId=rgreq-4981955a9cbe2e2328c7b7cb8d7b4610-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyMDE3MztBUzo3NDc5MDA2MzYyNTAxMTZAMTU1NTMyNDgxNTU5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chuan_Shi9?enrichId=rgreq-4981955a9cbe2e2328c7b7cb8d7b4610-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyMDE3MztBUzo3NDc5MDA2MzYyNTAxMTZAMTU1NTMyNDgxNTU5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Shanghai_Institutes_for_Biological_Sciences?enrichId=rgreq-4981955a9cbe2e2328c7b7cb8d7b4610-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyMDE3MztBUzo3NDc5MDA2MzYyNTAxMTZAMTU1NTMyNDgxNTU5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chuan_Shi9?enrichId=rgreq-4981955a9cbe2e2328c7b7cb8d7b4610-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyMDE3MztBUzo3NDc5MDA2MzYyNTAxMTZAMTU1NTMyNDgxNTU5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Binbin_Hu5?enrichId=rgreq-4981955a9cbe2e2328c7b7cb8d7b4610-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQyMDE3MztBUzo3NDc5MDA2MzYyNTAxMTZAMTU1NTMyNDgxNTU5OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

ANE: Network Embedding via
Adversarial Autoencoders

Yang Xiao∗ , Ding Xiao , Binbin Hu , Chuan Shi
Beijing Key Lab of Intelligent Telecommunications Software and Multimedia

Beijing University of Posts and Telecommunications,Beijing,China 100876
Email: ynynny@sina.com, dxiao@bupt.edu.cn, hubinbin@bupt.edu.cn, shichuan@bupt.edu.cn

Abstract—Network embedding is an important method to
learn low-dimensional representations of vertexes in network,
whose goal is to capture and preserve the highly non-linear
network structures. Here, we propose an Adversarial autoen-
coders based Network Embedding method (ANE for short),
which utilizes the rencently proposed adversarial autoencoders
to perform variational inference by matching the aggregated
posterior of low-dimensional representations of vertexes with
an arbitraray prior distribution. This framework introduces
adversarial regularization to autoencoders. And it is able to
attaches the latent representations of similar vertexes to each
other and thus prevents the manifold fracturing problem that is
typically encountered in the embeddings learnt by the autoen-
coders. Experiments demonstrate the effictiveness of ANE on
link prediction and multi-label classification on three real-world
information networks.

Keywords—network embedding, adversarial autoencoders, la-
tent representations.

I. INTRODUCTION

Nowadays, networks are ubiquitous and a lot of applications
are based on the information from networks. For example, On-
line shopping often needs to find similar users with common
interests in the social network. Therefore, one of the important
problems is how to learn latent network representations [1].
The most straightforward way is to embed network into a low-
dimensional latent space, i.e. learn low-dimensional represen-
tations for each vertexes of network, which can demonstrate
the structures of network and reconstruct network. Such a low-
dimensional embedding is useful in a variety of applications,
such as node classification [2], link prediction [3] and recom-
mendation [4]. However the latent structures of the network is
highly non-linear [5]. Therefore, one of the most important
problems is that capture the underlying high non-linearity
structures and preserveing both the local and global network
structures. And many real-world networks are frequently so
sparse that only very limited links can be used [6].

In the last few years, various network embedding methods
have been proposed, such as IsoMAP [7], Laplacian Eigen-
maps(LE) [8], DeepWalk [6], Node2vec [9], LINE [10] and
DNGR [11]. However, It is difficult for shallow models to
capture the highly non-linear network structure, whose rep-
resentation capacity is insufficient. Meanwhile, some models
are based on the neural language model, which does not
utilize the adjacency matrix of the network directly. And the

non-regularized autoencoders some method adopted typically
fracture the manifold into many different domains. [12].

On the other line, adversarial training has been proved
to be a great feature learning tool. In this paper we in-
troduce adversarial training into learning network-embedding
representations by training Adversarial Autoencoders (AAE)
[13]. This is motivated by the recent success of GANs [14],
which has been proved to have a powerful capacity to learn
reusable feature representations from complex data and has
achieved great success in image and text processing [15]–
[17]. Adversarial Autoencoders is trained with dual objectives,
a traditional reconstruction error criterion, and an adversarial
training criterion that matches the aggregated posterior distri-
bution of the latent representation of the autoencoder to an
arbitrary prior distribution, which has a strong connection to
VAE [18] traing.

We utilize a multi-layer autoencoders which consists of
multiple non-liner functions to capture the highly non-linear
network structures. The model must be able to optimize an
objective which preserves both the local and global network
structures. Therefore, we exploit the first-order and second-
order [10] into training process simultaneously. The first-order
proximity represents the similarity between the vertexes which
have the observed links in the network. However, observing
the first-order proximity of the network is not sufficient for
preserveing the global network structures. As a complement,
the model can capture the global network structures with
the second-order proximity, which is determined through the
shared neighborhood structures. To preserve both local and
global structures in ANE, the autoencoder component of the
model is used to capture the global structures by reconstructing
the second-order with a traditional reconstruction error crite-
rion. Meanwhile, the second component, which benefits from
the idea of Laplacian Eigenmaps, preserves the local network
structures by giving a punishment when the distance between
similar vertexes is far off in the latent representation space.

However, the original autoencoders typically encounters the
manifold fracturing problem. And adversarial training can alle-
viate the problem [13]. The adversarial training component can
be viewed as regularization component which discriminatively
predicts whether a sample arises from the low-dimensional
representations of the network or from a sampled distribution.
As a consequence, the model is able to learn representations
which capture network structures well.

To demonstrate the validity of the ANE, we conduct exper-
iments on three real-world network datasets which are from
real-word applications. The effectiveness of the learned low-
dimensional embeddings is evaluated within multiple tasks,
including network reconstruction, link prediction and multi-
label classification. The results demonstrate the representation
learned by our methed can generally outperform baselines in
these tasks. It shows effectiveness of the method in capturing
the network sttuctures.

Organization. The rest of this paper is organized as follows.
Section 2 summarizes the related work. Section 3 formally
defines the problem. Section 4 introduces the ANE model in
details. Section 5 presents the experimental results. Finally we
conclude in Section 6.

II. RELATED WORK

Our work focuses on network embedding, which aims at
mapping the network or vertex data to a low-dimensional latent
space where each vertex is represented as a low dimensional
real vector. Several network embedding methods including
DeepWalk [6], LINE [10], Node2vec [9], Deep Graph Kernels
[19] and DDRW [20] have been proposed. These models
are based on the neural language model. Several network
embedding models are based on other neural network model.
For example, DNGR [11] is based on a stacked denoising auto-
encoder, and [21] adopts the convolutional neural network to
learn the network feature representations. Unlike all the works
described above, in this paper, we introduce the adversarial
training to learn the network embedding.

The GAN is inspired by the Nash equilibrium in game the-
ory. The learning process becomes a procedure of competition
between generation model (G) and discriminant model (D)
to directly shape the output distribution of the network via
back-propagation. Compared with VAE, if the discriminator
network is a perfect fitting, then the generator will reconstruct
training distribution perfectly, and VAE has a certain bias. The
GAN provides an attractive alternative to maximum likelihood
techniques and has recently achieved great success on image
and text processing, especially image generation. Several re-
cent works including GAN [14], CGAN [15], LAPGAN [16]
and DCGAN [17] have been proved the adversarial training
has powerful ability on representation learning. Adversarial
autoencoder (AAE) [13] is a variation of generative adversarial
network. And AAE impose a prior distribution on the hidden
code vector of the autoencoder by matching the aggregated
posterior of the hidden code vector with the prior distribution,
which combines the advantages of GAN and VAE and is able
to alleviate the manifold fracturing problem. Therefore, we
introduce AAE to perform network embedding and impose
first-order and second proximity into AAE to preserve the
structures of network better.

III. PROBLEM DEFINITION

In this section, we define the problem of Netwoek Embed-
ding via Adversarial Autoencoders.

Definition 1: (Network)A network is defined as G = (V,E),
where V represents the set of vertexes and E is the set of
edges between the vertexes. Each edge e ∈ E is an ordered
pair e = (u, v) and associated with weight wu,v > 0, which
indicates the strength of the relation. If G is unweighted
network, wu,v = 1. If G is weighted network, wu,v > 0.
Otherwise, wu,v = 0, if there is no link between u and v.

In this paper, we only consider undirected networks. In order
to embed a network into a low-dimensional latent space, in
which each vertex is “encode” as a low-dimensional vector.
The embedding must preserved the network structures. The
first is capturing the network local structures, which are
characterized by first-order proximity between vertexes.

Definition 2: (First-order Proximity)The first-order prox-
imity is the pairwise proximity between two vertexes and
represents network local structures. For each pair of vertexes
linked by an edge, the wu,v > 0, which is on behalf of the
first-order proximity betweeen the two vertexes. Otherwise,
the first-order proximity is 0.

The first-order proximity implies the similarity of two
vertexes in a network if there exists an edge between the two
vertexes. However, the links in real world network is always so
sparse that measuring the similarity between the vertexes by
first-order proximity is difficult without observed link. There-
fore, we use the second-order proximity as complementary to
capture the network global structures.

Definition 3: (Second-order Proximity)The second-order
proximity is the similarity of the pair’s neighborhood struc-
tures between two vertexes. Let pu =

(
wu,1, · · ·wu,|V |

)
denote the first-order proximity of vertex u with all the
other vertexes in network. Consequently, the second-proximity
between u and v is determined by the similarity between pu
and pv .

Naturally, if a pair of vertexes have more common neigh-
bors, there exist more similarities between them. And the
second-order proximity is 0, if no vertex links to both u and
v.

We define the network embedding with first-order and
second-order proximity as follows.

Definition 4: (Network Embedding)Given a network G =
(V,E), network embedding aims at learning a function f :
V → Rd, which maps each vertex into a low-dimensional
space Rd, where d≪ |V |. And the latent representation pre-
serves the both first-order and second-order proximity between
vertexes.

IV. ANE:NETWOEK EMBEDDING VIA ADVERSARIAL
AUTOENCODERS

In this section, we first introduce the framework of ANE.
Then we introduce the loss functions. At last, we give the
alorithm of ANE.

A. Framework

In this paper, we propose the ANE to perform the network
embedding. The framework of ANE is shown in Figure 1.

Fig. 1. The framework of ANE

To capture the highly non-linear structures of network, we
use a deep model AAE with non-linear activation functiontons
map the input data to a non-linear low-dimensional latent
space to preserve the network structures.

The middle row is a standard autoencoder consisting of
an encoder network and a decoder network. The encoder
maps the input data x into a latent code z, then the decoder
reconstructs the input data as x̂. Accordingly, this component
is able to capture the second-order proximity of each vertex
by reconstructing its neighborhood structure, which can obtain
the neighborhood of vertexes and network global structure
indirectly.

The top row diagrams a component used to capture the first-
order proximity of a pair of vertexes by measuring the similar-
ities of vertexes in the low-dimensional latent space. Hence the
latent representation can obtain the pairwise similarities, i.e.
the local structures. By exploiting the first-order and second-
order proximity simultaneously, the model can preserve both
local and global network structures.

The bottom row is a discriminator network trained to
discriminatively predict whether a sameple arises from the
latent code of encoder or from a sampled distribution. As
[13] proved, such a discriminative procedure matches the
aggregated posterior distribution of the latent representation to
the prior distribution, which can refine the latent representation
of vertexes. As a result, ANE is able to learn a representation
of network.

B. Loss Functions

In this part, we introduce the loss functions of ANE. And
some of the terms and notations is defined in Table I. First, we
describe the autoencoder component to preserve the second-
oreder proximity.

The second-order proximity indicates the similarity of
neighborhood structures between two vertexes, which means

TABLE I
TERMS AND NOTATIONS

Symbol Definition

z latent representation/code
p(z) prior distribution imposed on z

q(z) aggregated posterior distribution of z
n number of vertexes

P = {p1, · · · pn} the adjacency matrix of the network
X = {xu}nu=1 , X̂ = {x̂u}nu=1 the input data and reconstructed data

θ the overall parameters

the more common neighborhood shared by a pair of vertexes,
the more similar they are. Therefore, the model needs to
model the all neighborhoods of each vertex. Given a network,
the information of the network structures including local and
global structures can be described by the adjacency matrix P .
The instances {p1, · · · pn} of the P indicate the neighborhood
structures of each vertex, where n is the number of vertexes.
For each pu = {pu,v}nv=1, pu,v describes the first-order
proximity between vertex u and v. Put P as the input, the
model is able to preserve the second-order proximity.

The autoencoder component tries to capture the second-
proximity by reconstructing the input. In detail, The encoder,
which is made of multiple non-linear activation functions,
maps the input data into the latent representation space. The
decoder is similar to the encoder, but its process is reverse,
i.e. reconstructing latent representation to reconstruction input
space. Let the adjacency matrix P as the input X to encoder
network, i.e. xu = pu, encoder will map instance xu to latent
representation zu. And then decoder network will reconstruct
zu to output x̂u. As previously mentioned, the pu describes the
neighborhood structures of vertex u. Then the reconstruction
process will capture the second-order proximity, where the
similarity of latent codes reflects the similarity of neighbor-
hood structures between vertexes.

Howerver, there are only a small number of links in real-
world network, which leads to the sparsity of network. As a
result, the number of zero elements in the adjacency matrix
P is much more than the elements of non-zero, which would
debase the effect of the reconstruction. The autoencoder com-
ponent would be inclined to reconstruct more zero elements
to output X̂ . Therefore, we use the weighted Binary Cross
Entropy as loss function to impose more penalty to the recon-
struction error of the non-zero elements than zero elements.
The objective function of each instance xu is shown as follows:

Lu=−1/n
n∑
v

ku,v(xu,vlog(x̂u,v)+(1−xu,v)log(1−x̂u,v))

(1)
where ku,v means the weight coefficient of penalty imposed
to the each elements. If pu,v = 0, ku,v = 1, else ku,v > 1.
Then the second-proximity objective function can be defined
as follows:

L2nd =
n∑
u

Lu (2)

With this objective function, the latent representation can
capture the network global structures. That is, the autoencoder
component is able to map a pair of vertexes with high second-
proximity near in the latent space.

However, it is insufficient to embed the network by recon-
structing the second-order proximity only, which ignores the
useful information of the network local structures. The model
should be able to get the first-order proximity. Intuitively, a
pair of vertexes linked by a certain edge has higher similarity.
Thus the similarity between the two vertexes in latent represen-
tation, which denotes the first-order proximity, is constrained
by the information of edge strongly. Therefore we impose
a component to take advantage of the information, which
borrows the idea from Laplacian Eigenmaps. The objective
function is shown as below:

L1st =
n∑

u,v=1

pu,v ∥zu − zv∥22 (3)

The objective function imposes a penalty on the pair of
vertexes which have high similarity but maped far away in
the latent representation space. In consequence, the latent
representation can capture the network local structures.

To embed the network by capturing both first-order and
second order proximity, we combine the proximity jointly
by training the objective function 2 and 3 simultaneously as
follow:

Lae = L1st + αL2nd (4)

The standard autoencoder is a powerful tool which provides
multiple non-linear function to learn a embedding of data.
But non-regularized autoencoders “fracture” the manifold into
many different domains which result in very different codes
for similar inputs [12]. To address this problem, adversarial
training is introduced into the autoencoder. As [13] proved,
AAE is able to match the aggregated posterior of the la-
tent representation with the prior distribution and impose a
adversarial regularization on autoencoder component, which
attaches the embedding of similar vertexes to each other and
thus prevents the manifold fracturing problem. In order to
do so, a discriminator network(D) is attached on the model,
and the encoder network is also regarded as generator(G).
Therefore, D and G play the following two-player minimax
game with the value function V (G,D):

min
G

max
D

V (D,G)=Ep(z)[logD(z)]+Eq(z)[log(1−D(z))]

(5)
Model training is mainly divided into two phases. In the

reconstruction phase, the autoencoder updates the encoder and
the decoder to minimize the Lae. In the regularization phase,
the adversarial network updates its discriminative network first
and then updates generator network.

C. The ANE Alorithm

Now we give the algorithm of ANE. In order to encourage
convergence of the minimax game, we use batchnorm in the
adversarial component [22], which helps deal with training
problems that arise due to poor initialization and helps gradient
flow in deep models. And we use the Dropout in training,
which has been proven to be an effective technique for
regularization and preventing the co-adaptation of neurons
[23]. Meanwhile, we use the Adagrad [24] as optimizer. The
algorithm is presented in Alg. 1.

Algorithm 1: Algorithm for the AAE
initialize θenc for encoder(Enc), θdec for decoder(Dec)
and θdis for discriminator(Dis).
repeat

/* Recontruction */
X ← random mini-batch from dataset
Z ← Enc(X)

L1st←
n∑

u,v=1
pu,v ∥zu − zv∥22 // 1st-order Loss

X̂ ← Dec(Z)

L2nd ←
n∑
u
Lu, // 2nd-order Loss

Lae ← L1st + αL2nd

θenc ← θenc − η∇θencLae

θdec ← θdec − η∇θdecLae

/* Adversarial Regularization */
Z̃ ← samples drawed from the prior p(z)
Ṽ ← log(Dis(Z̃)) + log(1−Dis(Z))
θdis ← θdis + η∇θdis Ṽ
V ← log(1−Dis(Z))
θenc ← θenc + η∇θencV

until converge;
return network embedding code Z = {zu}nu=1 and
parameters: θenc, θdec and θdis

V. EXPERIMENTS

In this section, we will verify the effectiveness of our
model by a series of expriments compared to several baseline
methods.

A. Datasets

In order to evaluate the effectiveness of the latent repre-
sentations generated by the model, we use three real-world
networks datasets in our expriments.

• Douban1 is a well-known social media network in China,
on which users post their likes or dislikes, through ratings
and comments, on movies, books, musics and so on. And
users can join the some clubs such as Douban Group and
Douban Location to communicate with people who share
the same interests. We use two datasets with group imfor-

1http://www.douban.com/

TABLE II
STATISTICS OF THE DATASET

Dataset #(V) #(E)

DOUBAN-MOVIE 779 1366
DOUBAN-BOOK 13024 169150

YELP 14085 150532

mation, i.e. Douban-book2 and Douban-movie3, crawled
from Douban. Thus, these datasets can be used for the
multi-label classification.

• Yelp 4 is a crowd-sourced local business review and social
networking site, users can submit a review of merchants
and communicate with other people. The dataset is used
for link-prediction because of lack of relevant informa-
tion.

The detailed description can be seen in Table II.

B. Evaluation

We use different evaluation metrics for the differ-
ent tasks. For reconstruction, we use the Mean Average
Precision(MAP) to evaluate the performance. The MAP is
defined as:

AP (u) =

∑
vprecision@k (u) ·∆u (k)

|{∆u (k) = 1}|

MAP =

∑
u∈QAP (u)

|Q|

where u ∈ V is the vertexes, ∆u (k) = 1 indicates that k-th
vertex of ranked vertexes list has a link with vertex u. And Q
is the query set.

For the link prediction, we use the widely employed metric
AUC(i.e.Area Under the ROC curve) to evaluate the perfor-
mance. The metric AUC is defined as:

AUC =

∑
e∈E ranke − NE(1+NE)

2

NE ·NE

where E is the edge set, NE and NE are the numbers of
non-zero elements and zero elements. And ranke indicates
the rank of e by the score of prediction.

For the multi-label classification, we use Micro−F1 and
Macro−F1. Macro−F1 gives equal weight to each class.
Let l and C as the a certain label and the overall label set.
Then Macro−F1 is defined as follow:

Macro− F1 =

∑
l∈C F1 (l)

|C|

Micro−F1 gives equal weight to each instance and defined
as follow:

2https://book.douban.com/
3https://movie.douban.com/
4http://www.yelp.com/

TABLE III
NEURAL NETWORK STRUCTURES

Dataset #nodes od each layer

DOUBAN-MOVIE 779-256-128
DOUBAN-BOOK 13024-1024-128

YELP 14085-1024-128

Pr =

∑
l∈C

TP (l)∑
l∈C (TP (l) + FP (l))

R =

∑
l∈C

TP (l)∑
l∈C (TP (l) + FN(l))

Micro− F1 =
2 · Pr ·R
Pr +R

where TP , FP and FN are the numbers of true positives,
false positive and false negatives in the instances.

C. Baseline Methods

For better evaluation of the proposed ANE method, we
compare it with the following methods.

• DeepWalk [6]: DeepWalk uses uniform random walk (i.e.,
depth-first strategy) to sample the inputs and trains the
network embedding based on skip-gram.

• LINE [10]: LINE can learn two representation vectors
for each node by optimizing two carefully designed
objective function that preserves the first-order proximity
and second-order proximity. Then the two representations
are concatenated as the final representation.

• Laplacian Eigenmaps(LE): LE generates network rep-
resentations by factorizing the Laplacian matrix of the
adjacency matrix. It only exploits first-order proximity
of network.

• Autoencoder: Autoencoder is a self-supervised technique,
which tries to copy its input to its output. As result, the
hiden layer would learn a compact representation of input.
We use the train procedure proposed by [25].

D. Parameter Settings

In the experiment, we use different dimensions of each layer
with different datasets. The structure of the encoder networks
is listed in Table III. The structure of the decoder networks is
similar to encoder but reverse. And the discriminator networks
are similar to decoder and replace last layer with a sigmoid
layer. And the priori distributions are Gaussion Distribution
typically used in AAE.

For the ANE, the hyper-parameyers of α and K are tuned
by using grid search. And for LINE, the learning rate of
the starting value is 0.025 and the mini-batch size is 1 of
the optimizer. Then the negative samples is set as 5. For
DeepWalk, we set window size as 5, walk length as 40. For
AE, we just use the second proximity information in it.

TABLE IV
MAP ON DOUBAN-BOOK, MOVIE AND YELP FOR RECONSTRUCTION

TASK

Algorithm DOUBAN-MOVIE DOUBAN-BOOK YELP

ANE 0.847 0.636 0.697
LINE 0.839 0.617 0.682

DeepWalk 0.694 0.437 0.513
LE 0.432 0.212 0.281
AE 0.225 0.131 0.122

E. Network Reconstruction

In this part, we evalute the capacities of different methods on
the network reconstruction. The network embedding aims to
preserve the network structures in low-dimensional represen-
tations. For this reason, the good network embedding method
should be able to capture the structures of network with
the learned embeddings, which can reconstruct the network
well. We use all three datasets in this experiment. Given a
network, we use different network embedding methods to get
the latent codes of the networks and then use the latent codes
to reconstruct the networks by predicting the links of original
networks. We can evaluate the reconstruction performance of
differernt methods with the training set error, because the
network reconstruction is via resuming the observed links. We
use the MAP as the evaluation metrics. The result is shown
in Table IV.

From the result, it evidently show that our method achieves
the highest MAP over the baselines on three datasets. It
demonstrates that our method can capture the network struc-
tures well. Specifically, for the network of the Douban-Movie
network, the MAP of the ANE can reach 0.847. It indicates
that our method can reconstruct the original network almost
same as the normal.

The LINE also exploits both first-order and second-order
proximity to capture the local and global network structures.
And the results of ANE and LINE perform better than LE
and AE, which are only exploits the first-order or second-order
proximity to capture the network structures. It shows that both
first-order, which indicates the local structures, and second-
order, which indicates global structures, play an important role
in preserving the network structures. And the reason why ANE
performs better than LINE may be that the adversarial training
improves the capacity of the model.

F. Link Prediction

In this part, we conduct link prediction task on all three
networks. We first use vertex latent representations to compose
edge representations and then use them to build a classifier
for predicting whether there is an edge between two vertexes.
Given a pair of vertexes (u, v) linked by an edge, we use an
element-wise operator to combine the vertexes latent code zu
and zv, which is Hadamard operator and defined as follow:

zuv = zu ∗ zv

TABLE V
AUC ON DOUBAN-BOOK, MOVIE AND YELP FOR LINK PREDICTION

TASK

Algorithm DOUBAN-MOVIE DOUBAN-BOOK YELP

ANE 0.853 0.724 0.829
LINE 0.836 0.709 0.805

DeepWalk 0.804 0.673 0.712
LE 0.631 0.617 0.622
AE 0.581 0.576 0.566

We randomly hide 15 percentages of existing edges of
these networks and use the AUC as the evaluation metric of
predicting the hidden edges. And we also randomly sample
pairs of vertexes as negative samples with an equal number of
hidden edges, where is no edge linking the pair of vertexes.
Together with the hidden edges and non-existent edges form
the dataset. The result is shown in Table V.

We observe that the performance of ANE with Hadamard
operator is better than other baselines on all three network.
It demonstrates that the latent representations learned by our
model have a better capacity on predicting new link.

And the results of ANE and LINE also perform better than
LE and AE. It proves the importance of expoliting both the
first-order and second-order proximity simultaneously into the
network embedding task again. The difference between results
of LE and AE may come from that the first-order proximity
indicates the link information directly. But the performances
of ANE and LINE indicate the the second-order proximity
may improve the ablity to find a new “neighbor”.

G. Multi-label Classification

We use the multi-label node classification task to evaluate
the quality of the latent representation learned by different
models in this experiment, because of the importance of
this task. Because the Groups in dataset Douban-Movie and
Douban-book is excessive and some of them only have one
member in the datasets we used, we remove those Groups that
only has one member after getting the network embedding.
The latent codes for the vertexes generated from all methods
are used as features to classify each vertex into a set of labels.
The one-vs-rest logistic regression classifier implemented in
LibLinear package [26] is used in our experiments. we ran-
domly sample 10% to 90% of the vertexes as the training
samples and use the left vertexes to test the performance. The
Micro−F1 and Macro−F1 are chosen as the evaluation
metrics. The resuls are shown as follows.

In Figure 2(a) and Figure 2(b), we observe that the curve of
ANE is above the curve of baselines. It shows that the latent
representations of our method can achieve better performace
on classification task than baselines.

In most cases, the performance of AE is the worst among
all methods. The reason may be that the zero elements are
much more than non-zero elements in adjacency matrices of
networks, and the traditional autoencoder gives an equal to
each elements. Thus it is more prone to reconstruct the zero

0.0 0.2 0.4 0.6 0.8 1.0

Percentage

0.1

0.2

0.3

0.4

0.5

M
ic
ro
-F
1

AE

LE

DeepWalk

LINE

ANE

0.0 0.2 0.4 0.6 0.8 1.0

Percentage

0.10

0.15

0.20

0.25

M
a
c
ro
-F
1

AE

LE

DeepWalk

LINE

ANE

(a) Micro-F1 and Macro-F1 on Douban-Movie

0.0 0.2 0.4 0.6 0.8 1.0

Percentage

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ic
ro
-F
1

AE

LE

DeepWalk

LINE

ANE

0.0 0.2 0.4 0.6 0.8 1.0

Percentage

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

M
a
c
ro
-F
1

AE

LE

DeepWalk

LINE

ANE

(b) Micro-F1 and Macro-F1 on Douban-Book

Fig. 2. Micro-F1 and Macro-F1 on Douban-Movie(a) and Douban-Book(b)

100 200 300 400 500

Dimension

0.3

0.4

0.5

0.6

0.7

0.8

M
A
P

DOUBAN-BOOK

DOUBAN-MOVIE

YELP

(a) dimension

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Alpha

0.3

0.4

0.5

0.6

0.7

0.8

M
A
P

DOUBAN-BOOK

DOUBAN-MOVIE

YELP

(b) α

0 2 4 6 8 10 12 14 16

K

0.3

0.4

0.5

0.6

0.7

0.8

M
A
P

DOUBAN-BOOK

DOUBAN-MOVIE

YELP

(c) K

Fig. 3. Parameter Sensitivity w.r.t. dimension, the value of α and the value of K

elements. It demonstrates that the model should pay more
attention on non-zero elements.

H. Parameter Sensitivity
In this part, We explore the sensitivity of the performance

w.r.t. the dimension of latent representations, the tradeoff
parameter α and the overall penalty coefficient K. We report
the MAP on all three datasets. The result is shown in Figure
3.

Embedding Dimension. First, we evaluate how the dimen-
sion of latent representation affects the performance of ANE.
In Figure 3(a), we observe that the performances increase
on all datasets at first, when the dimension of latent code
increases. It indicates that more dimensions can encode more
information from the network structures. However, as the
dimension continuously increases, the performance starts to
stop increasing slowly. The reason may be that the too many
dimensions would not bring more useful imformation in code
but introduces noises. Meanwhile, computational overhead has
increased dramatically with the dimension increasing. All in
all, it is important to find an appropriate dimension for the
latent embedding representation.

Tradeoff Parameter α. Then we show how the α affects
the performance in Figure 3(b). We can observe that the
performance of α = 0 is the worst. And the performance
increases initially when the α increases, then it stop increasing.
Because the parameter of α balances the weight of first-order
and second-order proximity, the α indicates the how much

impact of first-order proximity attached to model. The result
demonstrates that both local and global structures of network
are equally important on network embedding.

Penalty coefficient K. Finally, we evaluate how the penalty
coefficient K affects the performance. The coefficient K is the
reconstruction wieght of non-zero elements in the autoencoder
component. The larger the K, the more the component con-
centrates on the non-zero elements. When K = 1, the model
gives equal weight to each elements, the model would prone to
reconstruct zero elements because of the sparsity of network.
As the result shows, the performance of K = 1 is the worst.
However, the performance decreases when the K increases to
large. Because the model may reconstruct some non-existent
links. It suggests that the suitable penalty to non-zero elements
would improve the performance.

VI. CONCLUSION

In this paper, we have presented ANE for network embed-
ding. Specifically, we introduce the adversarial autoencoder
to network embedding with adversarial training, which can
improve the performance of the latent representations of net-
work by imposing an adversarial regularization. Meanwhile,
we exploit the first-order and second-order proximity in the
model to capture the network local and global structures.
As a result, the embedding learnt by ANE will preserve the
highly non-linear network structures well. Experimental results
on network reconstruction, multi-label classification and link
prediction show the effectiveness of ANE. In our future work,

we also plan to examine how to find an appropriate prior
distribution for network embedding.

REFERENCES

[1] S. Chang, W. Han, J. Tang, G.-J. Qi, C. C. Aggarwal, and T. S.
Huang, “Heterogeneous network embedding via deep architectures,” in
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2015, pp. 119–128.

[2] S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node classification in
social networks,” in Social network data analytics. Springer, 2011, pp.
115–148.

[3] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” journal of the Association for Information Science and
Technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[4] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick, and
J. Han, “Personalized entity recommendation: A heterogeneous informa-
tion network approach,” in Proceedings of the 7th ACM international
conference on Web search and data mining. ACM, 2014, pp. 283–292.

[5] D. Luo, F. Nie, H. Huang, and C. H. Ding, “Cauchy graph embed-
ding,” in Proceedings of the 28th International Conference on Machine
Learning (ICML-11), 2011, pp. 553–560.

[6] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701–710.

[7] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” science, vol. 290,
no. 5500, pp. 2319–2323, 2000.

[8] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural computation, vol. 15, no. 6,
pp. 1373–1396, 2003.

[9] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2016,
pp. 855–864.

[10] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
International Conference on World Wide Web. ACM, 2015, pp. 1067–
1077.

[11] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph
representations.” in AAAI, 2016, pp. 1145–1152.

[12] G. Hinton. (2013) Non-linear dimensionality reduction. [Online]. Avail-
able: https://www.cs.toronto.edu/ hinton/csc2535/notes/lec11new.pdf

[13] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adver-
sarial autoencoders,” arXiv preprint arXiv:1511.05644, 2015.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[15] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[16] E. L. Denton, S. Chintala, R. Fergus et al., “Deep generative image
models using a laplacian pyramid of adversarial networks,” in Advances
in neural information processing systems, 2015, pp. 1486–1494.

[17] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[18] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[19] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2015, pp. 1365–1374.

[20] J. Li, J. Zhu, and B. Zhang, “Discriminative deep random walk for
network classification.” in ACL (1), 2016.

[21] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in International Conference on Machine Learning,
2016, pp. 2014–2023.

[22] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning, 2015, pp. 448–456.

[23] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[24] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[25] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Advances in neural information
processing systems, 2007, pp. 153–160.

[26] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“Liblinear: A library for large linear classification,” Journal of machine

learning research, vol. 9, no. Aug, pp. 1871–1874, 2008.

View publication statsView publication stats

https://www.researchgate.net/publication/325420173

