Local and Global Information Fusion for Top-N

Recommendation in Heterogeneous Information Network

Binbin Hu¹, Chuan Shi¹, Wayne Xin Zhao², Tianchi Yang¹ ¹Beijing University of Posts and Telecommunications

²Renming University of China

Recommender System (RS)

- Discover items of interest from a large resource collection
- Basic recommendation method : Collaborative Filtering (e.g., matrix factorization)
- Suffer from cold-start problem
- Integrate more rich information (e.g., social network)

Heterogeneous Information Network (HIN)

• Include multiple types of nodes and links

Background

Local Information

- Direct interactions of users and items in HIN
- Breadth-first search (BFS)

Global Information

• Indirect interactions between users and items based on different metapaths.

Drawbacks of Traditional HIN based

Recommendation

- Treat different local information equally
- seldom exploit and explore local information and global information simultaneously

Our idea

- Learn different weights for different neighbors

- Model heterogeneous data and contain rich semantics
- Meta-path : Semantic paths between two objects in HIN
- Depth-first search (DFS)
- An unified model to extensively exploit the local interaction information and fully explore the global interaction information

LGRec : The Proposed Method

Model Local Information

- Encoding user and item
- Co-attention mechanism
 - $M_{i,j} = F(X_{u}^{(i)})AG(Y_{v}^{(j)})$

• Generate embeddings $a_i^u = MP(\{M_{ij}\}_{j=1}^{K_2}), \quad a_i^v = MP(\{M_{ji}\}_{j=1}^{K_1}).$ $\boldsymbol{x}_u = X_u \boldsymbol{a}^u, \quad \boldsymbol{y}_v = Y_v \boldsymbol{a}^v.$

Unified Model $s(u, v, z) = ||x_u + z - y_v||_2^2.$ $\ell_{trans} = max(0, \lambda + s(u^+, v^+, z^+) - s(u^-, v^-, z^-)),$ $\ell = \ell_{trans} + \alpha [\ell_{mc}(\boldsymbol{y}^+) + \ell_{mc}(\boldsymbol{y}^-)] + \beta \ell_{req}.$

Performance

Effectiveness Experiments

Models	Movielens		LastFM		Yelp		Amazon	
Widdels	HR@10	NDCG@10	HR@10	NDCG@10	HR@10	NDCG@10	HR@10	NDCG@10
ItemKNN	0.5854	0.3368	0.6327	0.5176	0.1480	0.0944	0.3153	0.1864
BRP	0.6766*	0.3860	0.7690	0.6061	0.5162	0.3186	0.3890	0.2195
MF	0.6702	0.3869*	0.7611	0.6051	0.5139	0.3176	0.3379	0.1893
NeuMF	0.6723	0.3816	0.7579	0.6070*	0.6660*	0.4218*	0.3619	0.2023
LRML	0.6140	0.3500	0.7204	0.5411	0.5934	0.3608	0.3304	0.1788
SVDFeature _{hete}	0.6033	0.3366	0.7848*	0.5813	0.6586	0.4117	0.3111	0.1575
FMG _{rank}	0.6267	0.3519	0.7758	0.5905	0.6080	0.3418	0.4154*	0.2244*
LGRec <i>noAtt</i>	0.4836	0.2446	0.7104	0.5531	0.1372	0.0756	0.2720	0.1380
LGRec _{noGlo}	0.6564	0.3824	0.7717	0.6060	0.5894	0.3353	0.3820	0.2151
LGRec	0.6914	0.3989	0.7865	0.6228	0.6902	0.4396	0.4235	0.2383

Datasets

Datasets	Relations (A-B)	#A	#B	#A-B	Meta-paths
Movielens	User-Movie	943	1,682	100,000	UMUM
	User-Age	943	8	943	UMGM
	User-Occupation	943	21	943	UAUM
	Movie-Genre	1,682	18	2,861	UOUM

• Meta-path based interaction • Generate latent relation based on MLP

- $h_{u,v} = x_u \oplus y_v,$ $z = MLP(h_{u,v}),$
- Multi-label classification

Model Global Information

 $\boldsymbol{p}_z = W_o z + \boldsymbol{b}_o,$

- $\ell_{mc}(\boldsymbol{y}) = -\boldsymbol{y} * \log(\sigma(\boldsymbol{p}_z)) (1 \boldsymbol{y}) * \log(1 \sigma(\boldsymbol{p}_z))$
 - $= p_z p_z * y + \log(1 + exp(-p_z)).$

LastFM	User-Artist	1,892	17,632	92,834	UATA
	User-User	1,892	1,892	18,802	UAUA
	Artist-Artist	17,632	17,632	153,399	UUUA
	Artist-Tag	17,632	11,945	184,941	UUA
Yelp	User-Business	16,239	14,284	198,397	UBUB
	User-User	16,239	16,239	158,590	UBCaB
	Business-City (Ci)	14,267	47	14,267	UUB
	Business-Category (Ca)	14,180	511	40,009	UBCiB
Amazon	User-Item	3,584	2,753	50,903	UIUI
	Item-View	2,753	3857	5,694	UIVI
	Item-Brand	2,753	334	2,753	UIBI
	Item-Category	2,753	22	5,508	UICI

Metrics

HR@10, NDCG@10

Compared Methods

CF based	HIN based	Ours
• ItemKNN	• SVDFeature.	• LGI
• BPR	• D i D i C d t t d t t d t t d t t d t t d t t t t t t t t t t	
• MF	• FMG _{rank}	• LGI
•) · · · · · ·		

- NeuMF • LRML
- GRec_{noAtt}
 - GRec_{noGlo} • LGRec

0.67

Conclusions

- We proposed a unified deep model to fully utilize local and global information for top-*N* recommendation.
- We learns importance of neighbors by the co-attention mechanism and optimize a multi-label classification problem to capture metapath based interactions.
- Extensive experimental results show the effectiveness of LGRec.

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (No. 61772082, 61502502, 61320106006, 61375058), the National Key Research and Development Program of China Municipal (2017YFB0803304), and the Beijing Natural Science Foundation (4182043, 4162032).

Contact

- hubinbin@bupt.edu.cn
- shichuan@bupt.edu.cn
- batmanfly@gmail.com
- yangtianchi@bupt.edu.cn

