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ABSTRACT
Incorporating review information into the recommender system has
been demonstrated to be an effective method for boosting the rec-
ommendation performance. Previous research mainly focus on de-
signing advanced architectures to better profile the users and items.
However, the review information in realities can be highly sparse
and imbalanced, which poses great challenges for effective user/item
representations and satisfied performance enhancement. To alleviate
this problem, in this paper, we propose to improve review-based rec-
ommendation by counterfactually augmenting the training samples.
We focus on a common setting — feature-aware recommendation,
and the main building block of our idea lies in the counterfactual
question: “what would be the user’s decision if her feature-level pref-
erence had been different?”. When augmenting the training samples,
we actively change the user preference (also called intervention),
and predict the user feedback on the items based on pre-trained
recommender models. Instead of changing the user preference in
a random manner, we design a learning-based method to discover
the samples which are more effective for model optimization. In
order to improve the sample qualities, we propose two strategies —
constrained feature perturbation and frequency-based sampling —
to equip our model. Since the sample generation model can be not
perfect, we theoretically analyze the relation between the model pre-
diction error and the number of generated samples. As a byproduct,
our framework can explain the user pair-wise preference, which is
complementary to the traditional point-wise explanations. Extensive
experiments demonstrate that our model can significantly improve
the performance of the state-of-the-art methods.

CCS CONCEPTS
• Information systems→ Recommender systems; Web applica-
tions; Web mining.
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1 INTRODUCTION
Recommender system, as an effective remedy for information over-
loading, has been successfully applied to a number of real-world
applications. The key of a successful recommender system lies in the
accurate understanding of the user preference. To achieve this goal,
recent years have witnessed an emerging trend of incorporating user
review information into the recommender system. Comparing with
the rating or implicit feedback, user reviews are much more informa-
tive, pooling an extensive wealth of knowledge about user opinions
and sentiments, which helps to understand the user preference in a
more comprehensive manner.

Previous review-based recommender models can be classified into
two categories. On the one hand, many models process the review in-
formation on the document level [4, 5, 16, 17, 21, 21, 23, 23, 24, 30].
All the review contents are squeezed into an embedding vector to
improve the user or item representation. Despite straightforward,
these methods inevitably introduce too much user/item irrelevant
information into the learning process, which brings difficulties for
identifying the real user preference and enhancing the recommen-
dation performance. On the other hand, many models utilize the re-
view information by extracting user feature-level preferences (a.k.a.
feature-aware recommendation). In specific, each user review is con-
verted into many “(user, item, feature, sentiment)” tuples, which
indicate the users’ sentiments towards the items’ features in a struc-
tured manner [7, 8, 26, 28]. As exampled in Figure 1(a), in the review
of “I like the collar of this shirt, but the sleeve is not satisfied, since
it is too tight for me.”, the features are “collar” and “sleeve”, and the
user expresses positive and negative sentiments on them. The final
extracted tuples are “(user, item, collar, positive)” and “(user, item,
sleeve, negative)”, respectively. Based on such user feature-level
preference, people have devoted much effort to designing models
based on matrix factorization [28], tensor [8, 26] factorization and
deep neural network [7]. These models have shown great potential
for improving the recommendation performance, but a fundamental
problem has been largely ignored, that is, the review information
can be not as ideal as expected. In real-world scenarios, different
people may have various reviewing habits. Figure 1(b) and 1(c)
present some statistics on the real-world Amazon1 dataset, we can
see: only a small amount of people frequently write reviews on their

1http://jmcauley.ucsd.edu/data/amazon/
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purchased products, while more inactive users only comment on
very few items. In each review, the users may not write down all
her preferences, and only a small number of features are mentioned.
These review- and feature-level imbalanced and sparse characters
pose great challenges for better incorporating the review information
into the recommender systems.

Counterfactual thinking is a recently emerged technique for en-
hancing the model performance and robustness [3, 6, 11, 25]. It
explores the use of alternative actions that are not taken by the agent,
which may allow the model to operate better in data-scarce scenar-
ios. In this paper, we borrow the idea of counterfactual thinking
to build review-based recommender models, which enables us to
generate more training samples for alleviating the data insufficiency
problem. In our method, the user-item similarity is predicted by
matching the users’ feature-level preference and the items’ qualities
on these features. We generate new samples by intervening on the
users’ feature-level preference, which simulates the counterfactuals
of “what would be the user’s behavior if her feature-level prefer-
ences had been different?”. We focus on the users’ pair-wise ranking
behavior. For generating more effective training samples, we learn
the “minimum” change of the user feature-level preference, which
can “exactly” reverse the preference ranking of the user on a given
item pair. To improve the sample qualities, we design the strategies
of constrained feature perturbation and frequency-based sampling.
Considering that the sample generation model can be not perfect, we
theoretically analyze the relation between the number of generated
samples and the model prediction error. Inspired by this theory, we
propose a simple but effective method to control the potential noisy
information contained in the generated samples. As a byproduct, our
model can provide pair-wise recommendation explanations, which is
able to explain why a user prefers an item to another one. We conduct
extensive experiments based on real-world datasets to demonstrate
our model’s superiorities. In a summary, the main contributions of
this paper can be concluded as follows:
•We propose to improve review-based recommendation by aug-

menting the training samples based on the idea of counterfactual
thinking.
• We design a learning-based intervention method to discover

critical samples for better model optimization. Our proposed method
can also provide recommendation explanations for user pair-wise
preference.
• We theoretically analyze the relation between the number of

generated training samples and the model prediction error, and de-
sign a simple but effective method to enhance the quality of the
generated samples.
• We conduct extensive experiments to evaluate our model’s

effectiveness and also present intuitive examples to illustrate the
recommendation explanations provided by our model.

2 COUNTERFACTUAL FEATURE-AWARE
COLLABORATIVE FILTERING

In this section, we introduce the proposed model — counterfactual
feature-aware collaborative filtering (CF2). Before describing the
model details, we formally define the studied problem at first. And
then, we illustrate our counterfactual data generation idea as well

Figure 1: (a) An example of converting the review information
into structured user feature-level preferences. (b) Statistics of
the Amazon (we select four representative categories for presen-
tation) dataset, where we plot the relation between the numbers
of reviews and users. We can see only a small amount of people
comment on large numbers of items. (c) Average numbers of
features mentioned in each review.

as the strategies of constrained feature perturbation and frequency-
based sampling. In the next, we discuss our model on the learning
algorithm, computational cost and explanation generation method.
At last, we theoretically analyze the relation between the number of
generated samples and the potential model prediction error.

2.1 Problem Definition
Suppose we have a user setU and an item set I. Their interaction
set is defined as T = {(𝑢, 𝑖) |𝑢 ∈ U, 𝑖 ∈ I, 𝑢 has interacted with 𝑖}.
The raw review information is converted into a set of quadruples
W = {(𝑢𝑙 , 𝑖𝑙 , 𝑓𝑙 , 𝑠𝑙 )}𝑁𝑙=1 based on an open sourced toolkit called
“Sentires”2, where each element (𝑢𝑙 , 𝑖𝑙 , 𝑓𝑙 , 𝑠𝑙 ) means user 𝑢𝑙 (∈ U)
mentioned feature 𝑓𝑙 in her review on item 𝑖𝑙 (∈ I) with sentiment
𝑠𝑙 (∈ {−1, +1}). Obviously, if a user review contains more than one
features, then it corresponds to multiple elements inW. We denote
the set of all features as F , then based onW, we follow the previous
work [7, 28] to build a user-feature attentions matrix 𝑨 = [𝑨𝑢 ] ∈
R |U |×|F | and an item-feature qualities matrix 𝑩 = [𝑩𝑖 ] ∈ R |I |×|F | ,
where 𝑨𝑢𝑓 and 𝑩𝑖 𝑓 represent the attention of user 𝑢 and quality of
item 𝑖 on feature 𝑓 , respectively. Given {U,I,𝑨,𝑩,T }, our task
is to learn a predictive function 𝑔, such that for each user, it can
accurately rank all the items, and the rankings can be well explained
based on the item features.

2.2 The Model Details
Given the user-feature attention matrix 𝑨 and item-feature quality
matrix 𝑩, we define a target model 𝑔, which predicts the user-item
affinity score via the feature information by:

𝑟𝑢𝑖 = 𝑔(𝑨𝑢 ,𝑩𝑖 ) (1)

2https://github.com/evison/Sentires



where 𝑨𝑢 ∈ R1×|F | and 𝑩𝑖 ∈ R1×|F | are the 𝑢th and 𝑖th row of 𝑨
and 𝑩, respectively, representing the attentions of 𝑢 and qualities of
𝑖 on all the features. The implementation of 𝑔 will be detailed later.

Recommender system aims to predict the users’ most favorite
items, which is basically a ranking problem. In this paper, we focus
on the user’s pair-wise preference, which is usually modeled by the
following BPR loss [19]:

𝐿BPR = −
∑

(𝑢,𝑖, 𝑗) ∈𝑶
log [𝜎 (𝑟𝑢𝑖 − 𝑟𝑢 𝑗 )] + 𝜆 | |𝑔| |2 (2)

where 𝜎 (𝑥) = 1
1+𝑒−𝑥 is the sigmoid function. 𝜆 | |𝑔| |2 is the regular-

ization term. 𝑶 denotes the set of all training samples. Each element
(𝑢, 𝑖, 𝑗) means user 𝑢 prefers item 𝑖 to item 𝑗 .

Counterfactual data generation. As mentioned before, the user
review information can be quite insufficient in realities. In order
to more comprehensively optimize the model, a nature idea is to
generate more training samples. Intuitively, the users’ pair-wise pref-
erences are determined by their feature-level attentions. As exampled
in Figure 2(a), for two candidate mobile phones, if a user casts more
attention on the brand, then iPhone can be her better choice. While if
she cares more on the price, then Xiaomi can be more attractive for
her. Different user-feature attentions may lead to different rankings
for the same item pair, which inspires us to generate new samples
by asking “what would be the user’s propensity on a given item pair
if her feature-level attentions had been different?”.

Straightforwardly, one can change the user-feature attentions in
a random manner, and predict the item rankings by 𝑔 to construct
new samples. However, this method can be suboptimal, since dif-
ferent training samples are not equally important in terms of model
optimization [12]. There is no mechanism in the random method
to ensure superiorities of the generated samples. In order to solve
this problem, we develop a learning-based method to discover more
effective samples.

In a typical classification problem, the decision boundaries refer
to the samples separating the feature spaces which can induce dif-
ferent output labels. The unique character of these samples is that:
the output label can be altered even with a small alteration on the
input features. Previous work [1, 12] have demonstrated that, these
boundary samples are discriminative in revealing the underlying data
patterns, and training based on them may lead to improved model
performance. Our method is inspired by this principle. Intuitively,
in our problem, the boundary sample is the user preference which
exactly discriminates the ranking directions of a given item pair
(as illustrated in Figure 2(b)). We learn such sample by “minimally”
changing the observed user-feature attentions (i.e., 𝑨𝑢 ), such that the
preference ranking for a given item pair can be “exactly” reversed.
Formally, we define a perturbation variable 𝝉 ∈ R |F | with each ele-
ment representing the attention change applied to the corresponding
item feature. We learn 𝝉 for each triplet (𝑢, 𝑖, 𝑗) ∈ 𝑶 independently
by the following objective3:

min
𝝉
| |𝝉 | |22 + 𝛼 log [𝜎 (𝑟

∗
𝑢𝑖 − 𝑟

∗
𝑢 𝑗 )] (3)

3Since all the following description is focused on one sample, we omit the index of the
user and item pair on 𝝉 for simplicity.

Figure 2: (a) An example on the effects of user feature-level
preference on item ranking. (b) An illustration on the decision
boundary, where we simplize the problem to include just one
feature, and the counterfactual sample we would like to gener-
ate is near the boundary with the original order reversed. The
red strap indicates the minimum user attention change 𝜏 in or-
der to reverse the item ranking. The blue strap illustrates that if
the attention change is not large enough (e.g., 𝜏−), then the item
ranking remains unchanged.

where 𝑟∗
𝑢𝑖

= 𝑔(𝑨𝑢 + 𝝉 ,𝑩𝑖 ) is the estimated score after changing the
user preference. 𝛼 is a tunning parameter balancing different terms.
The parameters of 𝑔 is fixed in the optimization process.

In this objective, the first term aims to minimize the change of
the user feature-level preferences. The second term tries to reverse
the preference ranking between item 𝑖 and 𝑗 . By jointly optimizing
them, we would like to change the user preference in a minimum
manner, such that the item ranking can be exactly altered.

Once 𝝉 is learned, the new sample is generated by:{
Generate (𝑢∗, 𝑗, 𝑖). if 𝑟∗𝑢𝑖 ≤ 𝑟

∗
𝑢 𝑗

No generation. otherwise
(4)

where the feature attentions of 𝑢∗ is 𝑨𝑢 + 𝝉 . Since we minimize 𝝉
in equation (3), for each generated sample, a small alteration on the
user-feature attentions (e.g., the blue strap in Figure 2(b)) will make
the perturbation variable 𝝉 not large enough to reverse the preference
ranking, which implies that the sample is near the decision boundary.

Constrained feature perturbation. In practice, there can be lots
of item features in the system, but usually, people may only consider
a small part of them in the decision process [28]. To incorporate such
character into our method, we design both hard and soft methods
to impose additional constraints on the perturbed features. In the
hard method, we restrict the perturbation to the users’ mostly cared
features. In specific, we select K largest elements in 𝑨𝑢 , and denote
the set of their indexes by 𝒛𝑢 . The user attentions are only allowed to
change on the features in 𝒛𝑢 , which leads to the following objective:

min
𝝉
| |𝒌𝑢 ⊙ 𝝉 | |22 + 𝛼 log [𝜎 (𝑟𝑢𝑖 − 𝑟𝑢 𝑗 )] (5)



where ⊙ is the element-wise product (a.k.a. Hadamard product).
𝑟𝑢𝑖 = 𝑔(𝑨𝑢 + 𝒌𝑢 ⊙ 𝝉 ,𝑩𝑖 ). 𝒌𝑢 ∈ R |F | is a mask vector, and 𝒌𝑢

𝑖
= 1 if

𝑖 ∈ 𝒛𝑢 , otherwise 𝒌𝑢
𝑖
= 0. This formula is a generalized case of (3),

and will immediately reduce to (3) when 𝐾 = |F |.
Despite straightforward, the optimal 𝐾 may vary on different

samples, and it is too time consuming to tune 𝐾 for each sample
separately. For solving this problem, we introduce 𝐿1-norm to en-
courage the sparse structure of 𝝉 , which automatically selects the
important features in a soft manner. The corresponding objective is:

min
𝝉
| |𝝉 | |22 + ||𝝉 | |1 + 𝛼 log [𝜎 (𝑟

∗
𝑢𝑖 − 𝑟

∗
𝑢 𝑗 )] (6)

Both of the hard and soft methods have their own advantages and
shortcomings. The hard method costs more effort to determine the
hyper-parameter 𝐾 , but it can incorporate intuitive prior knowledge
(e.g., perturbing only on the users’ most cared features) for better
performance. The soft method needs not to tune 𝐾 , but the model
can be too flexible to efficiently converge to the optimal results.

Frequency-based sampling. In order to fairly train different
users, we balance the number of generated samples according to
the users’ reviewing frequency. In specific, suppose there are 𝑛𝑢
reviews for user 𝑢, then we generate new samples for her with the

probability of
1

𝑛𝑢∑|U|
𝑖=1

1
𝑛𝑖

. In this way, more samples will be generated

for the users with less reviews in the original data, which may help to
train these users more sufficiently, while the users with more reviews
are suppressed to have less generated samples. By this strategy, our
model can be equally optimized for different users, and the learned
parameters will not over-represent only a small amount of users.

Implementation of 𝑔. Actually, the above counterfactual idea
is a framework, and we explore different implementations of 𝑔 to
demonstrate its effectiveness. The general architecture of 𝑔 is a
multi-layer neural network, that is:

𝑟𝑢𝑖 =𝑾𝑇𝜎𝑇 (𝑾𝑇−1𝜎𝑇−1 (...(𝑾1𝜎1 (𝑚(𝑨𝑢 ,𝑩𝑖 ))+𝒃1)+ ...) + 𝒃𝑇−1)+𝑏𝑇
(7)

where, for the 𝑡 th layer (𝑡 ∈ [1, 𝑙]), 𝜎𝑡 is a non-linear activation
function, and we specify it as ReLU for all the layers. 𝑾𝑡 ∈ R𝑑𝑡×𝑑𝑡−1
and 𝒃𝑡 ∈ R𝑑𝑡 are weighting parameters with 𝑑𝑇 = 1. 𝑚(·) is an
operator merging the user and item feature-level properties, and we
explore it within the following functions:
• Element-wise product:

𝑚(𝑨𝑢 ,𝑩𝑖 ) =𝑾
𝑝

𝑈
𝑨𝑇
𝑢 ⊙𝑾

𝑝

𝐼
𝑩𝑇𝑖 (8)

where 𝑾𝑝

𝑈
∈ R𝑑0×|F | and 𝑾

𝑝

𝐼
∈ R𝑑0×|F | are trainable parameters.

• Element-wise add:

𝑚(𝑨𝑢 ,𝑩𝑖 ) =𝑾𝑎
𝑈𝑨𝑇

𝑢 +𝑾𝑎
𝐼 𝑩

𝑇
𝑖 (9)

where 𝑾𝑎
𝑈
∈ R𝑑0×|F | and 𝑾𝑎

𝐼
∈ R𝑑0×|F | are trainable parameters.

• Hybrid method:

𝑚(𝑨𝑢 ,𝑩𝑖 ) = [𝑾ℎ1
𝑈 𝑨𝑇

𝑢 ⊙𝑾ℎ1
𝐼 𝑩𝑇𝑖 ,𝑾

ℎ2
𝑈 𝑨𝑇

𝑢 +𝑾ℎ2
𝐼 𝑩𝑇𝑖 ] (10)

where 𝑾ℎ1
𝑈
,𝑾ℎ2

𝑈
∈ R𝑑0×|F | and 𝑾ℎ1

𝐼
,𝑾ℎ2

𝐼
∈ R𝑑0×|F | are trainable

parameters.
• Attention-based method:

𝑚(𝑨𝑢 ,𝑩𝑖 ) =𝑾𝑎𝑡𝑡 [𝜶𝑢𝑖 ⊙ (𝑨𝑇
𝑢 ⊙ 𝑩𝑇𝑖 )] (11)

where 𝜶𝑢𝑖 = [𝛼𝑢𝑖,𝑗 ] |F |𝑗=1 are the attention weights, and 𝛼𝑢𝑖,𝑗 is com-

puted as exp (𝑤1𝐴𝑢,𝑗+𝑤2𝐵𝑖,𝑗 )∑|F|
𝑘=1 exp (𝑤1𝐴𝑢,𝑘+𝑤2𝐵𝑖,𝑘 )

. 𝑤1 ∈ R, 𝑤2 ∈ R and 𝑾𝑎𝑡𝑡 ∈

R𝑑0×|F | are trainable parameters.

2.3 Further Discussion
In the above section, we have introduced our main idea. Here, we
make more discussions on the proposed framework to it more com-
plete and insightful.

On the complete learning process. We present the complete
training process of our model in Algorithm 1. To begin with, the
target model 𝑔 is trained based on the original dataset by equation (2)
(line 1). Then, we generate 𝑀 counterfactual samples according to
the user reviewing frequency based on formula (5) or (6) (line 4-7).
At last, the target model is further learned by combining the original
and generated data (line 8-10).

On the computational cost. During the optimization process, 𝝉
is updated according to the following rule:

𝝉 = 𝝉 − 𝛽 [
𝛼𝜕 log [𝜎 (𝑟∗

𝑢𝑖
− 𝑟∗

𝑢 𝑗
)]

𝜕𝝉
+ 𝜕𝐶 (𝝉 )

𝜕𝝉
] (12)

where 𝛽 is the learning rate, 𝐶 (𝝉 ) is | |𝒌𝑢 ⊙ 𝝉 | |22 for objective (5) and

| |𝝉 | |22 + ||𝝉 | |1 for (6). Since 𝜕𝐶 (𝝉 )
𝜕𝝉 can be computed with constant

cost, we focus our analysis on
𝜕 log [𝜎 (𝑟 ∗𝑢𝑖−𝑟 ∗𝑢𝑗 ) ]

𝜕𝝉 . Suppose we denote
𝑥 = 𝑟∗

𝑢𝑖
− 𝑟∗

𝑢 𝑗
, then we have

𝜕 log [𝜎 (𝑥)]
𝜕𝝉

=
𝜕 log [𝜎 (𝑥)]

𝜕𝑥
· 𝜕𝑥
𝜕𝝉

= [1 − 𝜎 (𝑥)]︸      ︷︷      ︸
𝐴

· 𝜕𝑥

𝜕𝝉︸︷︷︸
𝐵

(13)

The computational cost of part A is in proportion to that of 𝑟𝑢𝑖 .
Suppose the cost of operator 𝑚(·) is M, then part A costs O(𝑀 +∑𝑇
𝑡=1 𝑑𝑡−1𝑑𝑡 ). For analyzing part B, we rewrite equation (7) as:

𝑟𝑢𝑖 = 𝑔𝑇 (𝑔𝑇−1 (...𝑔1 (𝑚(𝑨𝑢 ,𝑩𝑖 )) ...))
𝑔𝑡 (𝑠) =𝑾𝑡𝜎𝑡 (𝑠) + 𝒃𝑡 𝑡 ∈ [1,𝑇 ] (14)

Obviously, the computational cost of 𝜕𝑥
𝜕𝝉 is mainly determined by

𝜕𝑟𝑢𝑖
𝜕𝝉 . Suppose we denote 𝐿𝑡 = 𝑔𝑡 (𝑔𝑡−1 (...𝑔1 (𝑚(𝑨𝑢 ,𝑩𝑖 )) ...)), then
𝐿𝑡 =𝑾𝑡𝜎𝑡 (𝐿𝑡−1) + 𝒃𝑡 , and we have:
𝜕𝑟𝑢𝑖

𝜕𝝉
=

𝜕𝐿𝑇

𝜕𝐿𝑇−1
· 𝜕𝐿𝑇−1

𝜕𝝉
=𝑾𝑇 ·

𝜕𝐿𝑇−1
𝜕𝝉

=𝑾𝑇 ·𝑾𝑇−1 · ...𝑾1 ·
𝜕𝑚

𝜕𝝉
(15)

where the second equation holds because ReLU is used as the ac-
tivation function. Suppose the cost of 𝜕𝑚

𝜕𝝉 is 𝑀 ′, then part B costs
O(𝑀 ′ + ∑𝑇

𝑡=1 𝑑𝑡−1𝑑𝑡 ). As a result, the total computational cost of
equation (12) is O(𝑀 ′ +𝑀 +∑𝑇

𝑡=1 𝑑𝑡−1𝑑𝑡 ).
On the explainability. For generating recommendation explana-

tions, we learn 𝝉 for each feature separately, where we set 𝒌𝑢 in
equation (5) as a one-hot vector with 𝑘𝑢𝑠 (𝑠 ∈ [1, |F |]) as 1, then we
have the following objective:

min
𝜏𝑠
| |𝜏𝑠 | |22 + 𝛼 log [𝜎 (𝑟𝑢𝑖 − 𝑟𝑢 𝑗 )] (16)

where 𝜏𝑠 is the 𝑠th element of 𝝉 , representing the attention change
on the 𝑠th feature.

𝑟𝑢𝑖 = 𝑔(𝑨𝑢 + [ 0, 0, ..., 0︸   ︷︷   ︸
(𝑠−1) zeros

, 𝜏𝑠 , 0, 0, ..., 0︸   ︷︷   ︸
( |F |−𝑠) zeros

],𝑩𝑖 )
(17)



Algorithm 1: Learning algorithm of CF2

1 Train the target model 𝑔 with the original dataset O.
2 Initialize the counterfactual sample set 𝑂𝑐 = ∅.
3 for i in [1, M] do

4 Sample a user 𝑢 with the probability of
1

𝑛𝑢∑|U|
𝑖=1

1
𝑛𝑖

.

5 Sample a triplet (𝑢, 𝑖, 𝑗) in O.
6 Optimize formula (5) or (6) to get 𝝉 .
7 Compute 𝑟∗

𝑢𝑖
and 𝑟∗

𝑢 𝑗
based on 𝝉 .

8 if 𝑟∗
𝑢𝑖
≤ 𝑟∗

𝑢 𝑗
then

9 𝑂𝑐 ← 𝑂𝑐 ∪ (𝑢∗, 𝑗, 𝑖)
10 end
11 end
12 Train the target model 𝑔 based on O ∪𝑂𝑐 .

Intuitively, if we can alter the item ranking with smaller changes
on the user-feature attentions, then the corresponding features should
be more important, which are selected as the explanation features.
The template for generating explanations can be: “We recommend
you with item 𝑖 instead of item 𝑗 because of your cared feature 𝑠.”.

While explainable recommendation has been widely studied be-
fore [5, 15, 18, 26, 28], existing methods mostly explain the items
independently. However, in real-world scenarios, people always
making decisions via comparisons, e.g., “which item is more expen-
sive?”, “which movie is more popular?”. Our model can satisfy such
human nature by explaining the ranking of an item pair, where the
explanation for an item is not static, but influenced by the compared
item. If the previous models can be concluded as providing point-
wise explanations, our framework can be seen as a kind of pair-wise
explainable recommender model.

2.4 Theoretical Analysis
Careful readers may find that the sample generation process highly
depends on model 𝑔. If 𝑔 is not accurate, then the augmented data
can be noisy. In this section, we theoretically analyze the relation
between the number of generated samples and the prediction error
of 𝑔, if one wants to achieve sufficiently well performance. We base
our analysis within the PAC learning framework. To begin with, we
assume that equation (4) can recover the true ranking of the item
pairs based on the noisy parameter 𝜂 ∈ (0, 0.5), i.e., suppose the true
triplet is (𝑢, 𝑖, 𝑗), then equation (4) generates the true (i.e., (𝑢, 𝑖, 𝑗))
and wrong (i.e., (𝑢, 𝑗, 𝑖)) samples with the probabilities of 1 − 𝜂 and
𝜂, respectively. We have the following theory:

Theorem 1. Suppose ℎ ∈ H is an item ranking predictor4, where
H is the hypothesis class. For any 𝜖, 𝛿 ∈ (0, 1) and 𝜂 ∈ (0, 0.5),
if ℎ is learned based on empirical risk minimization (ERM), and

sample number is larger than
2 log ( 2|H|

𝛿
)

𝜖2 (1−2𝜂)2 , then the error between the
estimated result of ℎ and true value is smaller than 𝜖 with probability
larger than 1 − 𝛿 .

4If ℎ can accurately predict the ranking of any item pairs, then it can provide high
reliable recommendation results.

Table 1: Statistics of the datasets.

Dataset #User #Item #Interaction Density
Office Products 4905 2420 53258 0.45%
Digital Music 5541 3568 64706 0.33%
Tools & Home 16638 10217 134476 0.08%

Home & Kitchen 66519 28237 551682 0.03%
Yelp 4777 11774 187615 0.33%

The proof of this theory is similar to [27]. Suppose the prediction
error of a hypothesis inH is 𝑠, then the total error is 𝜂 + 𝑠 (1 − 2𝜂),
considering that the generated data is noisy. If the prediction error of
ℎ (i.e., 𝑠) is larger than 𝜖, Then, we have the empirical mis-matching
rate of ℎ is smaller than 𝜂 + 𝜖 (1−2𝜂)

2 . or the empirical mis-matching

rate of the optimal ℎ∗ is larger than 𝜂 + 𝜖 (1−2𝜂)
2 . Similar to [27], the

probability of making both of the above statements hold is smaller
than 𝛿 , which implies that the prediction error of ℎ is smaller than 𝜖
with the probability larger than 1 − 𝛿 .

This theory provides insights on the relation between the number
of generated samples and the noisy parameter. From the sample

complexity
2 log ( 2|H|

𝛿
)

𝜖2 (1−2𝜂)2 , we can see, as the noisy parameter 𝜂 becom-
ing larger, more samples are needed to achieve sufficiently well
performance.

Controlling the noisy information. Inspired by this theory, we
design a heuristic method to control the noisy information. In gen-
eral, we only remain the samples which are more reliable. More
specifically, we improve equation (4) by introducing a threshold
𝜅 ∈ R−, that is: {

Generate (𝑢∗, 𝑗, 𝑖). 𝑟∗𝑢𝑖 − 𝑟
∗
𝑢 𝑗 ≤ 𝜅

No generation. 𝑟∗𝑢𝑖 − 𝑟
∗
𝑢 𝑗 > 𝜅

(18)

In this equation, if we use a smaller 𝜅, the model has more confidence
on the generated samples, and the noisy information is reduced. But
at the same time, the number of new samples will be less, which
may impact the model performance. If we select a larger 𝜅, more
samples will be generated for sufficient training, but the noise rate
can also be increased. Thus, 𝜅 controls the trade-off between the
number and reliability of the generated samples. While such noise
control method is simple, it can achieve promising results in our
experiments, and we left more advanced methods as the future work.

3 EXPERIMENTS
In this section, we conduct experiments to verify our model’s effec-
tiveness, focusing on the following research questions:

RQ1: What is the overall performance of our model comparing
with the baselines?

RQ2: How different components in our model contribute the final
performance?

RQ3: How different hyper-parameters influence the model per-
formance?

RQ4: Whether the explanations provided from our framework
are reasonable?

In the following, we begin by introducing the experiment setup,
and then present and analyze the results to answer the above ques-
tions.



Table 2: Performance comparison between the baselines and our model. For each metric on different datasets, we use bold fonts to
label the best performance.

Dataset Office Products Digital Tools & Home Home & Kitchen Yelp

Metric (@5) 𝐹1 NDCG HR 𝐹1 NDCG HR 𝐹1 NDCG HR 𝐹1 NDCG HR 𝐹1 NDCG HR

BPR 0.088 0.110 0.420 0.086 0.147 0.429 0.050 0.071 0.263 0.081 0.122 0.409 0.190 0.290 0.755
NCF 0.102 0.127 0.464 0.081 0.115 0.352 0.058 0.080 0.303 0.082 0.128 0.429 0.178 0.236 0.783

MPCN 0.109 0.131 0.477 0.089 0.125 0.371 0.061 0.086 0.323 0.110 0.192 0.566 0.181 0.255 0.791
EFM 0.108 0.135 0.469 0.091 0.149 0.453 0.079 0.134 0.391 0.130 0.229 0.580 0.193 0.289 0.801
A2CF 0.113 0.171 0.550 0.092 0.155 0.461 0.080 0.138 0.413 0.133 0.238 0.590 0.197 0.292 0.805

CF2base-P 0.117 0.176 0.543 0.091 0.158 0.455 0.078 0.137 0.420 0.135 0.224 0.581 0.194 0.284 0.798
CF2rand-P 0.112 0.162 0.523 0.089 0.146 0.448 0.075 0.123 0.401 0.141 0.227 0.589 0.191 0.274 0.793
CF2hard-P 0.127 0.179 0.571 0.099 0.164 0.479 0.084 0.154 0.434 0.138 0.232 0.587 0.207 0.298 0.812
CF2soft-P 0.126 0.184 0.570 0.099 0.154 0.491 0.085 0.135 0.440 0.140 0.228 0.592 0.197 0.281 0.811

CF2base-A 0.114 0.165 0.534 0.088 0.135 0.445 0.080 0.125 0.430 0.140 0.233 0.584 0.204 0.284 0.810
CF2rand-A 0.110 0.160 0.523 0.090 0.143 0.447 0.080 0.135 0.421 0.139 0.232 0.581 0.204 0.283 0.803
CF2hard-A 0.120 0.170 0.547 0.100 0.166 0.482 0.084 0.138 0.431 0.144 0.238 0.601 0.207 0.286 0.812
CF2soft-A 0.123 0.174 0.564 0.094 0.141 0.458 0.083 0.138 0.428 0.143 0.234 0.592 0.208 0.288 0.812

CF2base-H 0.119 0.184 0.557 0.089 0.152 0.443 0.082 0.151 0.432 0.138 0.233 0.575 0.201 0.277 0.804
CF2rand-H 0.114 0.180 0.552 0.088 0.150 0.436 0.080 0.130 0.430 0.137 0.230 0.577 0.202 0.280 0.813
CF2hard-H 0.127 0.193 0.575 0.097 0.161 0.472 0.087 0.159 0.436 0.143 0.239 0.596 0.210 0.289 0.817
CF2soft-H 0.126 0.188 0.571 0.096 0.143 0.467 0.084 0.156 0.433 0.142 0.239 0.594 0.209 0.287 0.816

CF2base-AT 0.118 0.164 0.540 0.098 0.173 0.482 0.085 0.145 0.435 0.139 0.234 0.587 0.209 0.281 0.813
CF2rand-AT 0.113 0.165 0.530 0.100 0.176 0.493 0.087 0.147 0.444 0.138 0.226 0.586 0.205 0.284 0.809
CF2hard-AT 0.124 0.169 0.552 0.106 0.183 0.504 0.093 0.158 0.474 0.148 0.246 0.599 0.216 0.301 0.827
CF2soft-AT 0.121 0.181 0.557 0.104 0.176 0.486 0.089 0.154 0.454 0.143 0.241 0.592 0.213 0.291 0.819

3.1 Experiment Setup
Datasets. We base our experiments on the Amazon and Yelp5

datasets. Amazon is an e-commerce dataset, containing user re-
view information on the products from 25 categories. We select four
representative categories including Office Products, Digital Music,
Tools & Home and Home & Kitchen. These datasets cover different
characters, verying on the scale and density, e.g., Office Products is a
small and dense dataset, while Tool and Home Improvement is much
larger but sparser. Yelp is a reviewing dataset, which contains user
comments on the Restaurants, Bars, Dentists and etc. The statistics
of these datasets are presented in Table 1.
Baselines. We compare our model with the following representative
baselines and most of these baselines can be used directly in the
Bole project [29]:

BPR [19] is a well known recommender model for capturing user
implicit feedback.

NCF [13] is a famous neural recommender model, which is able
to capture the non-linear relationships between the user preferences
and item properties.

MPCN [24] is a state-of-the-art review-based recommender model,
which processes the review information on the document-level.

5https://www.yelp.com/dataset/download

EFM [28] is a well known feature-aware recommender model
based on matrix factorization.

A2CF [7] is a state-of-the-art feature-aware recommender model,
where the user-item-feature correlations are captured by the attentive
neural network.

CF2
base is the model implemented by equation (7), and we do not

augment the training data in this method.
CF2

rand is a simple data augmentation model, where the user
feature-level preference is randomly changed without learning the
boundary samples.

We denote our framework based on equation (5) and (6) as
CF2

hard and CF2
soft, respectively. There are four options to imple-

ment𝑚(·), and we call them as “-P” (element-wise product), “-A”
(element-wise add), “-H” (hybrid method) and “-AT” (attention-
based method), respectively.
Implementation details. In the experiments, each user’s last and
second last interactions are used for model testing and validation,
while the others are left for training. The commonly used metrics
including F1, NDCG and Hit Ratio are leveraged for comparing
different models. For each user, we recommend 5 items, which are
compared with the ground truth for computing different metrics. In
our model, the parameters are learned based on stochastic gradient
decent (SGD). The hyper-parameters are determined by grid search.



More specifically, the learning rate, batch size, K and threshold 𝜅 are
tuned in the ranges of [0.0001, 0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1.5],
[32, 64, 128, 256, 512], [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] and [0.0,
− 0.1,−0.2,−0.3,−0.4,−0.5], respectively. For the baseline models,
we set the parameters as the values reported in the original papers or
tune them in the same ranges as our model’s.

3.2 Overall Comparison
The overall comparison results are presented in Table 2, we can see:
in most cases, the models without review information (i.e., BPR and
NCF) perform worse than the other baselines, which verifies the
effectiveness of user reviews in boosting the recommendation per-
formance. Among the review-based models, EFM usually exhibits
better performance than MPCN. We speculate that some review
contents can be not related with the user or item properties. Blindly
incorporating all the review information (like MPCN) may bias the
model learning process and lower the final performance. By captur-
ing the non-linear relationships between different features, A2CF
outperforms EFM in most cases.

Encouragingly, our framework can consistently achieve the best
performance on all the evaluation metrics across different datasets.
For the same implementation of 𝑚(·), we can always observe im-
proved performances of CF2hard−𝑋 and CF2soft−𝑋 against CF2base−𝑋 ,
where𝑋 belongs to {“P”, “A”, “H”, “AT”}. This result demonstrates
the effectiveness of our counterfactual data augmentation idea. How-
ever, if we take a closer comparison between CF2rand − 𝑋 and our
model, we can conclude that while data augmentation is potentially
useful, randomly changing the user-feature attentions is not a good
strategy. In order to generate more informative data, we learn to
discover the decision boundary samples, which is shown to be more
effective in promoting the target model performance.

CF2hard−𝑋 and CF2soft−𝑋 alternatively obtain the best performance
on different datasets. Notably, the better results of CF2hard − 𝑋 is
achieved by exploring different K’s, which can be computational
inefficient. In order to make a selection between CF2hard − 𝑋 and
CF2soft−𝑋 , one should balance the trade-off between the accuracy and
computational cost. For different implementations of𝑚(·), hybrid
or attention-based methods can achieve better performance in most
cases. We speculate that hybrid method can incorporate different
feature aggregation strategies, while attention-based method can
distinguish the importances of different features, thus both of them
can obtain superior performances.

3.3 Ablation Studies
The above section evaluates our framework as a whole. Readers may
also be interested in how different model components contribute
the final performance. There are three important modules in our
framework, that is, constrained feature perturbation, frequency-based
sampling and noisy information control. In this section, we conduct
ablation studies by asking the following questions:
• Whether the strategy of constrained feature perturbation is

effective?
• Whether frequency-based sampling is useful in boosting the

performance?
•Whether the noise control method can benefit the recommenda-

tion performance?

To answer these questions, we compare our model with its five
variants: CF2−cst-X does not impose any constraints on the perturbed

features. CF2hard,−samp-X and CF2soft,−samp-X remove the strategy of

frequency-based sampling, and we constraint the features in both
hard and soft manners. In CF2hard,−𝜅 -X and CF2soft,−𝜅 -X, we do not

filter the noisy information, and equation (4) is leveraged to generate
new samples. Similarly, we regularize the features with both hard
and soft methods. In the experiment, the model parameters are set
as their optimal values, and we implement𝑚(·) based on the hybrid
(H) and attention-based (AT) methods (i.e., X is either H or AT),
which have obtained better performance in the above experiments.
We present the results on the Amazon datasets in Table 3, and the
conclusions on Yelp are similar and omitted.

We can see: if we do not impose constraints on the features (i.e.,
CF2−cst-X), the performance of our framework is lowered on all the
datasets and metrics. This result agrees with the observations in
the previous work [28], and manifests that involving too many fea-
tures may indeed introduce too much flexibility for accurate user
modeling. Appropriately constraining the perturbed features is an
effective strategy for generating unambiguous samples to boost the
recommendation performance. Comparing with CF2hard,−samp-X and

CF2soft,−samp-X, our final model can consistently achieve better per-
formance, which confirms the effectiveness of the frequency-based
sampling strategy. At last, we can observe lowered performance of
CF2hard,−𝜅 -X and CF2soft,−𝜅 -X comparing with CF2-X. This manifests
that the noisy control strategy is important for the final result. While
the designed thresholding method is simple, it brings quite promis-
ing performance gains. For the hybrid method, the performance can
be enhanced by about 10.8%, 13.7%, 7.16% on 𝐹1, NDCG, HR,
respectively. For the attention-based method, the improvements on
the same metrics are 18.4%, 20.1% and 12.1%.

3.4 Influence of the Hyper-parameters
In this section, we study the influence of different hyper-parameters.
We present the results on the attention-based method (i.e., “AT”),
and the results on the other implementations of𝑚(·) are similar and
omitted. When tunning one parameter, we fix the other ones as their
optimal values determined in the above experiments.

Influence of 𝐾 . In the hard feature perturbation method, 𝐾 is
an important parameter, determining how many features should be
involved for altering the user preference. We tune 𝐾 in the range of
[10, 100], and the results are presented in the first line of Figure 3.
We can see: the best performance is usually achieved when 𝐾 is
moderate. The reason can be that, too little features can be not
enough to capture the users’ potentially complex preferences. While
if we involve too many features, the model may introduce too much
uncertainties, which makes it hard to achieve satisfied performance.

Influence of 𝜅. As mentioned above, 𝜅 controls the confidence
of the generated data. Smaller 𝜅 means higher confidence. To ob-
serve its influence, we tune it from -0.5 to -0.1, and the results are
presented in the second line of Figure 3. It is interesting to see
that too small 𝜅 (high confidence) does not lead to better perfor-
mance. The reason can be that if we lower 𝜅, the sample generation
conditions become more rigorous, which reduces the number of
produced samples. This may lead to insufficient model optimization,



Table 3: Comparison between our model and its variants. We use bold fonts to label the best performance.

Dataset Office Products Digital Tools & Home Home & Kitchen
Metric (@5) 𝐹1 NDCG HR 𝐹1 NDCG HR 𝐹1 NDCG HR 𝐹1 NDCG HR

CF2−cst-H 0.124 0.180 0.562 0.093 0.140 0.461 0.082 0.147 0.431 0.142 0.238 0.593
CF2hard,−samp-H 0.122 0.172 0.566 0.095 0.149 0.468 0.083 0.138 0.438 0.141 0.236 0.587

CF2soft,−samp-H 0.121 0.169 0.555 0.094 0.144 0.463 0.078 0.124 0.428 0.131 0.205 0.576

CF2hard,−𝜅 -H 0.112 0.168 0.535 0.087 0.142 0.425 0.074 0.117 0.399 0.137 0.229 0.577
CF2soft,−𝜅 -H 0.117 0.176 0.562 0.087 0.142 0.425 0.081 0.148 0.424 0.127 0.215 0.542

CF2-H 0.127 0.193 0.575 0.097 0.161 0.472 0.087 0.159 0.436 0.143 0.239 0.596

CF2−cst-AT 0.119 0.167 0.538 0.102 0.175 0.496 0.087 0.141 0.461 0.145 0.245 0.595
CF2hard,−samp-AT 0.117 0.166 0.537 0.101 0.174 0.492 0.089 0.153 0.447 0.143 0.239 0.596

CF2soft,−samp-AT 0.119 0.177 0.543 0.102 0.175 0.496 0.087 0.153 0.451 0.141 0.239 0.589

CF2hard,−𝜅 -AT 0.078 0.109 0.399 0.097 0.170 0.479 0.067 0.112 0.345 0.135 0.227 0.583
CF2soft,−𝜅 -AT 0.119 0.178 0.564 0.101 0.173 0.494 0.079 0.124 0.431 0.142 0.240 0.590

CF2-AT 0.124 0.181 0.557 0.106 0.183 0.504 0.093 0.158 0.474 0.148 0.246 0.599
* In the last line of each block, we present the best performance of our framework for reference.

Figure 3: Influence of 𝐾 and 𝜅 on the recommendation performance.

and thus limit the recommendation performance. However, when
𝜅 reaches a relative large value, the performance tends to be stable.
We speculate that while there can be more samples joining into the
optimization process, they can be noisy, which is detrimental for the
final performance.

3.5 Pair-wise Recommendation Explanations
In this section, we evaluate the explainability of our framework from
both qualitative and quantitative perspectives.

3.5.1 Qualitative analysis. In order to provide intuitive under-
standings on our framework, in this section, we present many case

studies to illustrate the generated pair-wise explanations in a qualita-
tive manner. As mentioned in section 2.3, the features with smaller
𝜏𝑠 are more important for the current item ranking. We select five
most important features for each case, and present the results in
Figure 4(a). We can see: in the first case, the user is satisfied with
the weight of the positive item, but complains on weight of the neg-
ative item. The weight can be an important feature influencing the
user decisions, which is successfully learned from our model. In
the second case, according to the user reviews, the item price can
be an important feature in the user’s mind when comparing the two
items, which is accurately predicted by our model. These cases show
the capability of our model in predicting the decisive features for



Figure 4: (a) Qualitative analysis. In each case, there is a user
and an item pair, and we also present the real review informa-
tion for reference. The bottom line shows the features learned
from our model. (b) Results of the quantitative analysis.

the item rankings, which builds the basis for pair-wise explainable
recommendation.

3.5.2 Quantitative analysis. In addition to the above qualita-
tive analysis, we also conduct quantitative studies on the generated
recommendation explanations. More specifically, we compare our
model with A2CF, which, as far as we know, is the only method for
pair-wise explanations. We implement𝑚(·) with the attention-based
method, and the parameters are set as their optimal values. In the
experiment, we randomly select 200 (user, positive item, negative
item) triplets from the testing set of Tools & Home, where each user
has at least 10 interactions in the training set. We ask the workers
to read the reviews of each user in the training set. Since the user
has sufficient interactions (>10), the workers can more accurately
understand her preference. For both of our model and A2CF, we
generate the most important features, and ask the workers to label:
whether our model is better than, on par with or worse than A2CF.
From the results shown in Figure 4(b), we can see, our model can
indeed lead to more reasonable explanations, which demonstrates
the effectiveness of leveraging the “sensitivity” of each feature to
explain the recommendation results.

4 RELATED WORK
4.1 Feature-aware Recommendation
Feature-aware recommendation has attracted increasing attention
in the past few years. It differentiates itself from the other review-
based recommendation by extracting user feature-level preference
from the raw user reviews. Among existing models, explicit factor
model (EFM) [28] is a most famous algorithm, which captures the
correlations between the users, items and features based on coupled
matrix factorization. In this model, the user preferences and item
qualities are connected based on the feature information. Once the
model learned, one can explain the recommendation results with
the item features. In the past few years, EFM has inspired many
following research. MTER [26] and LRPPM [9] extend EFM by
tensor factorization to emphasize the user personalized preference
on the item features. A2CF [7] designs a neural network to capture
the non-linear correlations among the users, items and features, and
leverages attention mechanism to distinguish different feature impor-
tances. This method can also explain user pair-wise preferences, but
it does not use the counterfactual idea to learn the minimum attention

changes on the features. Different from these methods, which mostly
focus on designing model architectures, we focus on a orthogonal di-
rection, i.e., alleviating the training data insufficient problem, where
we counterfactually augment the user review information to assist
more comprehensive model optimization.

4.2 Counterfactual Thinking
Counterfactual thinking belongs to the human introspection behav-
iors, such as “what if I took another road?” and “what if I did not
eat that apple?”. Recently, the concept of counterfactual thinking
has been introduced into the machine learning community to aug-
ment the training data by exploring the potential samples when the
original conditions are revised [2, 10, 14, 20]. In the field of neural
language processing (NLP), [31] leverages counterfactual data aug-
mentation to mitigate gender stereotypes in the observed data. In
the field of computer vision (CV), [11] generates additional trajec-
tory data to enhance the vision-and-language navigation task in an
adversarial manner. [6] incorporates the counterfactual idea into a
multi-agent training process for scene graph generation. In this paper,
we leverage the idea of counterfactual thinking to build review-based
recommender models, which, to the best of our knowledge, is the
first time in this field. In addition, we theoretically analyze that, if the
generated samples are noisy, how many data one needs to generate
in order to achieve sufficiently well performance within the PAC
learning framework [22].

5 CONCLUSION
In this paper, we propose to enhance review-based recommenda-
tion based on the idea of counterfactual data augmentation. The
key question for generating new samples is: “what would be the
user’s propensity on an item pair if her feature-attentions had been
different?”. Instead of randomly revising the users’ feature-level
preference, we learn to discover the decision boundary samples,
which can be more effective in terms of model optimization. We
also propose a method for providing pair-wise recommendation
explanations, and theoretically analyze our framework when the
generated samples are noisy. Extensive experiments are conducted
to demonstrate our model’s effectiveness.

This paper actually opens the door of incorporating causal in-
ference into the field of review-based recommendation. There is
still much room left for the following work. For example, one can
introduce exogenous variables to model the users’ previous status for
more accurate sample generation. Since our model is a framework,
one can easily extend it to other recommendation settings when the
user and item can be represented by some types of “contents”.

6 ACKNOWLEDGMENT
This work is supported in part by National Natural Science Founda-
tion of China (No. 62102420 and No. 61832017), Beijing Outstand-
ing Young Scientist Program NO. BJJWZYJH012019100020098,
CCF-Ant Group Research Fund, Intelligent Social Governance Plat-
form, Major Innovation & Planning Interdisciplinary Platform for
the "Double-First Class" Initiative, Renmin University of China, and
Public Computing Cloud, Renmin University of China.



REFERENCES
[1] Ehsan Abbasnejad, Damien Teney, Amin Parvaneh, Javen Shi, and Anton van den

Hengel. 2020. Counterfactual vision and language learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10044–
10054.

[2] Rupam Acharyya, Shouman Das, Ankani Chattoraj, and Md Iftekhar Tanveer.
2020. FairyTED: A Fair Rating Predictor for TED Talk Data. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 34. 338–345.

[3] Oron Ashual and Lior Wolf. 2019. Specifying object attributes and relations in
interactive scene generation. In Proceedings of the IEEE International Conference
on Computer Vision. 4561–4569.

[4] Rose Catherine and William Cohen. 2017. TransNets: Learning to Transform for
Recommendation. arXiv preprint arXiv:1704.02298 (2017).

[5] Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. 2018. Neural attentional
rating regression with review-level explanations. In WWW. 1583–1592.

[6] Long Chen, Hanwang Zhang, Jun Xiao, Xiangnan He, Shiliang Pu, and Shih-Fu
Chang. 2019. Counterfactual critic multi-agent training for scene graph generation.
In Proceedings of the IEEE International Conference on Computer Vision. 4613–
4623.

[7] Tong Chen, Hongzhi Yin, Guanhua Ye, Zi Huang, Yang Wang, and Meng Wang.
2020. Try This Instead: Personalized and Interpretable Substitute Recommenda-
tion. (2020).

[8] Xu Chen, Zheng Qin, Yongfeng Zhang, and Tao Xu. 2016. Learning to Rank
Features for Recommendation over Multiple Categories. In SIGIR.

[9] Xu Chen, Zheng Qin, Yongfeng Zhang, and Tao Xu. 2016. Learning to rank
features for recommendation over multiple categories. In Proceedings of the
39th International ACM SIGIR conference on Research and Development in
Information Retrieval. 305–314.

[10] Silvia Chiappa. 2019. Path-specific counterfactual fairness. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 33. 7801–7808.

[11] Tsu-Jui Fu, Xin Eric Wang, Matthew F Peterson, Scott T Grafton, Miguel P
Eckstein, and William Yang Wang. 2020. Counterfactual Vision-and-Language
Navigation via Adversarial Path Sampler. In European Conference on Computer
Vision. Springer, 71–86.

[12] Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan Lee. 2019.
Counterfactual visual explanations. arXiv preprint arXiv:1904.07451 (2019).

[13] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th interna-
tional conference on world wide web. International World Wide Web Conferences
Steering Committee, 173–182.

[14] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. 2017. Counterfac-
tual fairness. In Advances in neural information processing systems. 4066–4076.

[15] Trung-Hoang Le and Hady W Lauw. 2021. Explainable Recommendation with
Comparative Constraints on Product Aspects. In Proceedings of the 14th ACM
International Conference on Web Search and Data Mining. 967–975.

[16] Donghua Liu, Jing Li, Bo Du, Jun Chang, and Rong Gao. 2019. DAML: Dual At-
tention Mutual Learning between Ratings and Reviews for Item Recommendation.
In SIGKDD. 344–352.

[17] Julian McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics:
understanding rating dimensions with review text. In Recsys.

[18] Deng Pan, Xiangrui Li, Xin Li, and Dongxiao Zhu. 2020. Explainable recommen-
dation via interpretable feature mapping and evaluation of explainability. arXiv
preprint arXiv:2007.06133 (2020).

[19] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press,
452–461.

[20] Chris Russell, Matt J Kusner, Joshua Loftus, and Ricardo Silva. 2017. When
worlds collide: integrating different counterfactual assumptions in fairness. In
Advances in neural information processing systems. 6414–6423.

[21] Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu. 2017. Interpretable Convolu-
tional Neural Networks with Dual Local and Global Attention for Review Rating
Prediction. In Recsys.

[22] Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding machine learning:
From theory to algorithms. Cambridge university press.

[23] Yunzhi Tan, Min Zhang, Yiqun Liu, and Shaoping Ma. 2016. Rating-Boosted
Latent Topics: Understanding Users and Items with Ratings and Reviews.. In
IJCAI.

[24] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Multi-Pointer Co-Attention
Networks for Recommendation. (2018).

[25] Khanh Hiep Tran, Azin Ghazimatin, and Rishiraj Saha Roy. 2021. Counterfactual
Explanations for Neural Recommenders. arXiv preprint arXiv:2105.05008 (2021).

[26] Nan Wang, Hongning Wang, Yiling Jia, and Yue Yin. 2018. Explainable Recom-
mendation via Multi-Task Learning in Opinionated Text Data. SIGIR (2018).

[27] Zhenlei Wang, Jingsen Zhang, Hongteng Xu, Xu Chen, Yongfeng Zhang,
Wayne Xin Zhao, and Ji-Rong Wen. 2021. Counterfactual Data-Augmented Se-
quential Recommendation. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 347–356.

[28] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping
Ma. 2014. Explicit factor models for explainable recommendation based on
phrase-level sentiment analysis. In SIGIR.

[29] Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Kaiyuan Li, Yushuo
Chen, Yujie Lu, Hui Wang, Changxin Tian, Xingyu Pan, et al. 2020. RecBole:
Towards a Unified, Comprehensive and Efficient Framework for Recommendation
Algorithms. arXiv preprint arXiv:2011.01731 (2020).

[30] Lei Zheng, Vahid Noroozi, and Philip S Yu. 2017. Joint deep modeling of users
and items using reviews for recommendation. In WSDM.

[31] Ran Zmigrod, Sabrina J Mielke, Hanna Wallach, and Ryan Cotterell. 2019. Coun-
terfactual data augmentation for mitigating gender stereotypes in languages with
rich morphology. arXiv preprint arXiv:1906.04571 (2019).


	Abstract
	1 Introduction
	2 Counterfactual Feature-aware Collaborative Filtering
	2.1 Problem Definition
	2.2 The Model Details
	2.3 Further Discussion
	2.4 Theoretical Analysis

	3 Experiments
	3.1 Experiment Setup
	3.2 Overall Comparison
	3.3 Ablation Studies
	3.4 Influence of the Hyper-parameters
	3.5 Pair-wise Recommendation Explanations

	4 Related Work
	4.1 Feature-aware Recommendation
	4.2 Counterfactual Thinking

	5 Conclusion
	6 Acknowledgment
	References

