
A Scalable Social Recommendation Framework
with Decoupled Graph Neural Network

Ke Tu1, Zhengwei Wu1, Binbin Hu1, Zhiqiang Zhang1, Peng Cui2, Xiaolong
Li3, and Jun Zhou1

1 Ant Group
{tuke.tk,zejun.wzw,bin.hbb,lingyao.zzq,jun.zhoujun}@antgroup.com

2 Tsinghua University cuip@tsinghua.edu.cn
3 Alibaba Group xl.li@alibaba-inc.com

Abstract. Social relationships are usually used to improve recommen-
dation quality, especially when users’ behavior is very sparse in recom-
mender systems. Most existing social recommendation methods apply
Graph Neural Networks (GNN) to capture users’ social structure infor-
mation and user-item interaction information. However, the GNNs need
to conduct expensive neighborhood propagation, leading to scalability is-
sues. Some recent works pointed out that the GNNs can be simplified via
decoupling. Therefore, we propose a scalable framework for social recom-
mendation to decouple the model into two stages, Gumbel-based feature
propagation and self-supervised multi-representation fusion. In the first
stage, since the similarity between friends will not change frequently, we
pre-train a Gumbel sampling-based attention model offline to learn the
importance of each social relation and use the importance as the weight
to aggregate the feature during pre-computation. Due to the diversity
of user interests, the features are propagated upon different propaga-
tion layers to capture information with different aspects. In the second
stage, we use the aggregated representations as inputs and fuse the in-
puts by an attention mechanism to obtain comprehensive embeddings on
the online mode to update daily. Besides, we use a contrastive learning
way to enrich users’ information. Moreover, extensive experimental re-
sults demonstrate the scalability and effectiveness of our framework over
state-of-the-art algorithms.
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1 Introduction

Nowadays, recommender systems are widely used in the industry, such as e-
commerce, advertising, and search engines. Due to the widespread existence
of data sparsity and cold start issues, recent studies seek to introduce social
networks into recommender systems, known as Social Recommendation, for en-
riching “cold” users’ information via their neighbors, guided by the principle of
homophily [10] that friends tend to share similar interests. Meanwhile, Graph
Neural Networks (GNNs) [4] has become newly state-of-the-art for modeling
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network structure, and its effectiveness in facilitating social recommendation
has been well studied [19]. Roughly speaking, existing works mainly extend pre-
vailing GNN architectures to adapt for various social recommendation scenarios
through social diffusion [15], adversarial training based denoising [19, 17] and
self-supervised learning [16, 6]. Notwithstanding the promising performance in
benchmarks, we are crucial about following fundamental questions, aiming at
the industrial settings of social recommender systems based on GNNs.

– Is the recently emerging GNN-based social recommendation approaches suit-
able for real-world industrial applications? Current GNN based social recom-
mender systems, such as Diffnet++ [15] and MHCN [20], follow the typical
GNN architecture, which recursively obtains user/item representations via
nonlinear transformation of its neighbors. Intuitively, the heavy design causes
both high computational cost and large space requirement, which severely
threatens the scalability of the industrial recommender system. Moreover,
the scale of recommender systems, as well as the social networks, is enor-
mous in real-world business and is expected to be exploited for training
and inference in a tolerable delay. Such a dilemma highlights an inevitable
bottleneck to incorporating GNNs into social recommendation in practice.

– Is social/interaction relations in reality reliable enough to unfold the strength
of GNNs? Unfortunately, real-world relational data is not only noisy (i.e.
users may misclick some unwanted items) but also unreliable (i.e. the strength
of social ties is uncertain) in most cases. Due to the recursive embedding
propagation of GNNs, the capability of GNN-based social recommendation
clearly deteriorates by passing unsatisfying or even harmful information.

– How to address the problem of the information asymmetry among different
views in the social recommendation? By incorporating social relations, users
may naturally have multiple views of neighbors such as friends and clicked
items. Due to the sparsity issue, the user may have very few neighbors in
some views. The final representations may be mainly influenced by the rich
information view by the uniform neighbor aggregation of GNNs. It is impor-
tant to enrich the sparse context for balancing different views to solve the
information asymmetry issue.

In this paper, we borrow the basic idea of GNN decoupling and propose a
Scalable Social Recommendation framework named SSR for the online recom-
mendation system. We decouple our model into two-stage, Gumbel-based [7]
feature propagation and self-supervised multi-representation fusion. In the first
stage, we pre-process the feature propagation offline. To deal with the noisy
and unreliable social relations, we pre-train a Gumbel-attention based GNN to
choose the most critical social neighbors. Then we propagate features among the
selected neighbors upon different propagation layers to keep the diversity of node
representations. In the second stage, we use the pre-processed propagated fea-
tures as input and apply an attentive aggregation to summarize representations
from different propagation layers for users and items on the online daily updated
datasets. In terms of the information asymmetry issue among different views, we
come up with the contrastive learning [5] module to learn their representations.
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As the feature propagation in the first stage is pre-processed only once offline,
and the online deep neural network in the second stage is efficient, our model
can be scaled to large network datasets.

It is worthwhile to highlight the following contributions of this paper:

– We highlight the importance of the scalability problem in the social recom-
mendation and propose a novel model named Scalable SocialRecommendation
framework ( SSR) for the recommendation system which is scalable for mas-
sive industry scenarios. To the best of our knowledge, our model is the first
work to introduce decoupled GNN into social recommendation.

– We decouple our model into the offline and online stage. In the offline pre-
train stage, we use Gumbel attention to obtain the most useful social friends
for solving unreliability issue of social relations. And in the online daily up-
dated stage, we design a model to merge representations from different path-
guided views and enrich the interest information for all users by contrastive
learning to deal with information asymmetry issue.

– Extensive experimental results, including three common-used public datasets
and a large-scale industry dataset, demonstrate the scalability and effective-
ness of our framework over the state-of-the-art algorithms.

2 RELATED WORK

2.1 Graph Neural Network

The Graph Neural Networks(GNNs) [22] has been proposed to deal with net-
work data in an end-to-end manner. [1] introduces the graph signal process and
defines the convolution in the Fourier spectral domain. GAT [14] applies a self-
attention strategy to aggregate nodes in neighborhoods with different weights.
Benefit from the strong network representation ability, GNNs are widely used in
industry scenarios. Despite their effectiveness, the graph neural networks used
in previous works lead to scalability issues in real industry massive scenarios. It
is worth mentioning that recently deep insights into GNNs have shed some light
on the design of scalable GNNs in practice, which performs simplification via de-
coupling [13, 21]. They decouple GNNs into two-stage, feature propagation, and
non-linear mapping. For example, SIGN [13] proposes to delete the non-linear
operators and simplify GNNs into an MLP operating on pre-computed concate-
nated multi-hop averaged features. Moreover, NARS [21] extends them into a
heterogeneous version. However, its effectiveness has not been explored for social
recommendation. Most notably, the unreliability of relations could lead to terri-
ble degradation in recommendation performance since neighbor averaging-based
strategies are commonly adopted for decoupling.

2.2 Social Recommendation

Due to the social network principle of homophily, users’ interests are often influ-
enced by their friends. Recent works aim to introduce social networks into the
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recommender system to alleviate the issue of data sparsity. The early social rec-
ommendation models can be categorized into two groups, factorization methods,
and regularization methods. The factorization-based methods, such as SoRec [8],
factorize the user-item rating matrices and user-user social matrices and map
the factorized user and item representations into the same latent space. As for
the regularization methods [9], they add a social regularization loss term, which
guides the users’ representations are closed to the representations of their friends,
to the user preference ranking loss term. Based on these ideas, recent works in-
troduce graph neural networks to describe the social network and preference
network. Diffnet++ [15] model the recursive dynamic social diffusion to apply
information from social neighbors. ESRF [19] and RSGAN [17] use adversarial
training to generate reliable friends for denoising social relations. S2-MHCN [20]
apply hypergraph to capture motif structures to solve the multi-faceted social
relations. However, in the real world daily updated recommender systems, none
of them can well solve the scalability, unreliability, and information asymme-
try issues. In light of the above considerations, we develop a GNN-based social
recommender system by graph decoupling to solve all the previous issues.

3 THE PROPOSED FRAMEWORK
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Fig. 1. The Framework of Our Proposed Model SSR.

In this section, we will introduce our proposed framework named Scalable
Social Recommendations Framework (SSR) shown in Figure 1. Our framework
consists of two parts, Gumbel-based feature propagation and self-supervised
multi-representation fusion.

3.1 Notations

Let U = {u1, u2, ..., um} and I = {i1, i2, ..., in} denotes the sets of users and
items in a traditional recommendation scenario, where m is the number of users
and n is the number of items. We define the user feature matrix and item feature
matrix as XU ∈ Rm×d and XI ∈ Rn×d. In social recommendation, there are two
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networks, user-item interaction network Go = {Vo = {U, I},Ao} and social
network Gs = {Vs = U,As} where Vo, Vs denote the node sets and Ao, As

denote the adjacency matrix. If user u has interaction with item i, such as
clicked and purchased, Ao,ui equals 1 otherwise 0. As,u1u2 = 1 denotes user u1

and u2 have social relations. No(u) and Ns(u) are user u’s neighbors in network
Go and Gs, respectively. Y ∈ Rm×n is the feedback matrix and yui which user
u’s feedback on the item i is either 1 (positive) or 0 (negative or unknown). In
our setting, there may be two user-item interaction networks Go and Gm

o . Go

is historical behavior network for first stage pre-training. And Gm
o is the recent

daily updated user-item interaction network. We give the definition of the task
Social Recommendation as follows:

Definition 1 (Social Recommendation). Given the social network Gs =
{Vs = U,As}, user-item interaction network Go = {Vo = {U, I},Ao} and the
features of users XU and items XI , the social recommendation aims to learn a
predictive model that effectively forecasts the future user-item interaction.

3.2 Graph Model Decoupling

Most existing graph neural networks are composed of feature propagation and
non-linear mapping. In the model, a non-linear mapping follows a feature prop-
agation step as follows:

T(k) = AH(k), (1)

H(k+1) = σk(T
(k)W(k)), (2)

where A is sparse adjacency matrix, {H(k), k = 1, 2, ...,K} is the hidden rep-
resentations and we set H(0) equals feature matrix X and W(k) is the weight
matrix in layer k. The σk is a non-linear function. For different graph neural net-
works, the weighted adjacency matrix A may be different. For example, GCN [4]
and GAT [14] re-weight the adjacency matrix by degree and attention matrix
respectively. Since there is a massive sparse-dense matrix multiplication in Equa-
tion 1, it is very time-consuming. As LightGCN [3] pointed out, the primary role
of GNNs is based on the message-passing layer instead of the non-linear mapping
layer. After deleting the non-linear mapping between layers, the GNNs can be

simplified as: H
(K)
LightGCN = σ((α1AX + α2A

2X + ... + αKAKX)W). In such
a situation, the GNNs can be decoupled as feature propagation and non-linear
mapping. In the feature propagation step, we can pre-compute all the feature
propagations such as AX,A2X, ...,AKX since there are no trainable variables.
This process runs only once. In the non-linear mapping step, we can merge the
propagated features and apply a deep neural network to learn weights W. It
can be efficient and scalable. To introduce decoupled GNNs into social recom-
mendation, we enrich these two steps into Gumbel-based feature propagation
and self-supervised multi-representation fusion. The first step of our model is
pre-trained offline and runs only once to obtain stable social relationships. And
the second step updates daily online to use the stable social relationships and
the new arrival datasets to forecast the future user-item interactions.
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3.3 Gumbel-based Feature Propagation

Graph Gumbel Attention Network Different from the traditional recom-
mendation problems, there are social relations in our setting. In real-world social
networks, the relations between users may be noisy and unreliable. However, the
sparse weighted adjacency matrix A used in previous works is usually constant
and human-designed. To find the useful neighbors who contribute most to the
task, we need sparse attention to sparsify the social networks to obtain a sparse
and most useful weighted adjacency matrix A′. We propose a pre-trained model
named Graph Gumbel Attention Network (GGAN) to obtain the learned adja-
cency matrix A′. Since the social relations between users are stable in the middle
period and users’ interaction behaviors with items change daily, the goal of the
pre-train model is to obtain the denoised and sparse social adjacency matrix. To
make the discrete neighbor selection differentiable, we use Gumbel sampling [7]
along with the reparametrization trick to produce a relaxation of the one-hot
vector to represent the selected new neighbor. For a user u, we first calculate
the edge attentions of each neighbor as follows:

αuv = softmaxv∈Ns(u)(LeakyReLU(WT
a [Xu∥Xv])), (3)

whereWa is trainable weight matrix, ∥ is the concatenate function and LeakyReLU
is a non-linear activation. We denote the user u’s attention vector as αu =
[αu1∥αu2∥...∥αum]. Then the Gumbel-sampled relaxation of one-hot vector to
select the important neighbor is as follows:

vu =
exp ((logαu + g) /τ)∑

v∈N (u) exp ((logαuv + gv) /τ)
, (4)

where g follows the Gumbel(0, 1) distribution4. τ ∈ (0,+∞) is the temperature
hyper-parameter and it controls the sparsity of the one-hot vector. When τ is
smaller, vu is closer to a one-hot vector. We conduct Gumbel sampling for T
times in Equation 4 to obtain the Gumbel attention-based adjacency matrix:

A
′

s = As ⊙
T−1∑
i=0

V(i)/T, (5)

where ⊙ is the dot product, V is a matrix of all Gumbel attentions, and As

is the sparse adjacency matrix of social network Gs. After that, we aggregate
social neighbors’ information like Equation 1 and 2 to obtain social-based hidden

representation H
(k+1)
s . For the user-item network, we use the origin sparse adja-

cency matrix A
′

o = Ao to aggregate graph information to obtain interest-based

hidden representation H
(k+1)
o in the same way. We combine the final H

(K)
s and

H
(K)
o followed an MLP layer to obtain the final user representation H

(K)
U . Then

4 Gumbel(0, 1) can be transformed by uniform distribution, g = −log(−log(u)), u ∈
Uniform(0, 1).
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we use the inner product of the final user and item representation to predict the
feedback labels:

LGGAN =
∑

(u,i)∈O

∥H(K)
u H

(K)T
i −Yui∥2, (6)

where O is the set of all samples including positive samples and randomly sam-
pled negative samples. After optimizing GGAN by Adam, we can obtain the
learned sparse social adjacency matrix A

′

s.

3.4 Social Representations with Multiple Path-guided Views

To better keep the diversity of node representations, we use multiple parameter-
free propagation layers to generate multiple representations as the input of
the second stage. To keep users’ short real-time interests, we use the recent
daily updated user-item interaction network A

′

o along with the previous learned
social weighted adjacency matrix A

′

s to aggregate neighbors. We aggregate
the feature in the way of propagation path sets MU = {U,UI, UU,UIU} and
MI = {I, IU, IUI, IUU} as follows:

EU = XU ;EI = XI ;EUI = A
′

oEI ;EIU = A
′T
o EU ;

EUU = A
′

uEU ;EIUU = A
′

oEUU ;EUIU = A
′

oEIU ;EIUI = A
′T
o EUI .

(7)

The propagation paths can be categorized into four overlapped groups ac-
cording to the implicit semantics. U and I are the origin feature of users and
items. UI and IU contains users’ behavior information. UIU and IUI apply
high-order network information. UU and IUU rich users’ information by social
relations. Since the propagation process is parameter-free, this generation can
be pre-processed before training.

3.5 Self-supervised Multi-Representation Fusion

In the second stage, we fuse the pre-processed features {Ep, p ∈ MU ∪ MI}
and capture the users’ interests in an end-to-end manner. These representations
cover different aspects of users and items. We use an attention mechanism to
obtain the cross information. The attention aims to learn the importance of each
propagated representation of p. For simplicity, here we only present the attentive
aggregator for users, and the same aggregator will be used for items:

F0
p = LeakyReLU(EpW

0
p + b0

p), β̂p = LeakyReLU(F0
pW

a
p + ba

p),

βp =
exp(β̂p)∑

p∈MU
exp(β̂p)

,Fm
U =

∑
p∈MU

βp ∗ F0
p,

(8)

where W0
p,W

a
p ,b

0
p,b

a
p are trainable weight matrix, F0

p is the representation
of propagation path p and Fm

U is final user representation. To learn the users’
interests, we optimize the model with the loss:

Lrec =
∑

(u,i)∈O

∥Fm
u FmT

i −Ym
ui∥2, (9)
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where Ym
ui is recent rating matrix from daily user-item behavior network Gm

o .
Besides, due to the information asymmetry issue, we introduce contrastive

learning as a regularizer to enrich users’ propagated path representations. For
this purpose, we maximize the mutual information between one user’s path repre-
sentation F0

p,ui
and one of his randomly sampled neighbor’s path representations

F0
q,uj

. In such a way, the path representations in sparse domains can be enriched.

In particular, we set as the embedding pair (F0
p,ui

,F0
q,uj

) with (ui, uj) ∈ Gs

where ui and uj are reliable neighbors selected by Gumbel attention in Equa-
tion 5 as positive sample. And we generate negative sample (F0

p,ui
,F0

q,uk
) by

randomly selecting L users {ukc , c = 0, 1, ..., L−1} with (ui, ukc) /∈ Gs. Then we
define the mutual information by InfoNCE [5] is as follows:

LinfoNCE =
∑

(ui,uj)∈Gs

− log
exp

(
F0

p,ui
F0T

q,uj

)
exp

(
F0

p,ui
F0T

q,uj

)
+

∑
(ui,ukc )/∈Gs

exp
(
F0

p,ui
F0T

q,ukc

) .
(10)

Then the total loss of the second stage is the combination of two losses,

L2 = Lrec + γLinfoNCE , (11)

where γ is the coefficient to control the balance of the two losses.

3.6 Complexity Analysis

In this section, we discuss the complexity of our model. In the first stage, the most time-
consuming part is graph convolution and Gumbel attention. The time complexity is
O((|As|+|Ao|)dK+|YUI |d). It is easy to see that the first stage is linear to the number
of all edges which is the same as traditional GNNmodels. However, it can be pre-trained
only once so the online training process will not have this time cost. So we focus more
on the second online daily update stage. There is no graph propagation process which is
very time-consuming in the second stage. The training time complexity is O(|Ym

UI |Pd)
where |Ym

UI | denotes the number of training user-item pairs in the second stage. And
P means the number of paths which is a constant. Therefore, the time complexity of
the second online stage is close to a multi-layer MLP model and much lower than that
of previous GNN-based social recommendation methods.

4 Experiment

In this section, we conduct experiments to evaluate the performance of SSR. Specifi-
cally, we aim to answer the following research questions:

– RQ1: How does SSR perform compared to the state-of-the-art baselines?

– RQ2: How time efficient is the proposed scalable two-stage framework?

– RQ3: Can the proposed SSR be scale to real industry massive datasets?

– RQ4: How does each of the key components of SSR affect the model?
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Table 1. Dataset Statistics

Dataset #User #Item #Feedback #Density #Relation

LastFM 1,892 17,632 92,834 0.28% 25,434
Yelp 17,237 38,342 204,448 0.04% 143,765
Flick 8,358 82,120 314,809 0.05% 187,273

Industry 5,183,534 5,433 22,914,019 0.08% 366,640,997

4.1 Datasets and Baselines

In order to comprehensively evaluate the effectiveness of our proposed method, we eval-
uate the proposed SSR on three common-used public datasets (i.e., Last.fm5, Yelp6,
Flickr7) and one massive real-world industry recommendation dataset(i.e., Industry).
Since there is no time logs in the three public datasets, we use the same user-item
interaction in both offline and online stage. In this industry setting, we use user-item
interaction of the past month to train the first pre-train stage and user-item interac-
tion of one recent week to train the second online daily-updated stage. The detailed
descriptions of the four datasets are summarized in Table 1. Following [15], to perform
the evaluation, for each user, we randomly select 1000 unrated items that a user has
not interacted with as negative samples, followed by the ranking procedure with the
positive samples among 1000 negative samples. Two relevancy-based metrics (i.e., Pre-
cision@15 and Recall@15 ) and one ranking-based metric (i.e., NDCG@15 ) are used to
evaluate the performance of all methods. To reduce the uncertainty in this process, we
repeat this procedure 5 times and report the average results.

We compare SSR with a set of commonly-used social recommendation baselines, in-
cluding MF-based and GNN-based models. In summary,BPR [12] and FM [11] are tra-
ditional recommendation methods. LightGCN [3] is a fast GNNmodel.DiffNet++ [15],
ESRF [19], MHCN [20], SEPT [18] are GNN-based social recommendation models.
For the general settings of all the methods, we empirically set the dimension of latent
embeddings to 64, the balance coefficient γ to 0.01, and the batch size to 2000. We
use the Adam optimizer for all these models with an initial learning rate of 0.001. For
GNN-based models, the number of graph convolutional layers are set as 2.

4.2 Overall Performance Comparison (RQ1)

Since most of the datasets would take too much time on the largest dataset Industry,
we conduct the performance comparison over all baselines on public benchmarks, i.e.,
Last.fm, Yelp, and Flickr. The results are presented in Table 2. From the results, we
have the following observations:

– It is easy to see that our proposed SSR achieves significant improvements over
the baselines on all datasets for most cases. Even though our method gets some
little negative gains on some datasets with MHCN, the MHCN is much more time-
consuming and can not scale to massive industry datasets. The actual training
time comparison can be found in the next section.

5 http://files.grouplens.org/datasets/hetrec2011/
6 https://www.yelp.com/dataset/challenge
7 https://www.flickr.com/
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Table 2. Recommendation Performance Comparison

Dataset Metric BPR FM LightGCN DiffNet++ ESRF MHCN SEPT SSR

Prec@15 0.328 0.312 0.309 0.338 0.339 0.361 0.327 0.353
Last.fm Recall@15 0.499 0.475 0.469 0.514 0.516 0.549 0.497 0.536

NDCG@15 0.494 0.480 0.476 0.514 0.518 0.548 0.479 0.536

Prec@15 0.041 0.040 0.038 0.045 0.045 0.045 0.042 0.047
Yelp Recall@15 0.372 0.362 0.345 0.412 0.410 0.410 0.377 0.426

NDCG@15 0.208 0.202 0.188 0.226 0.226 0.224 0.206 0.236

Prec@15 0.052 0.051 0.054 0.054 0.052 0.060 0.055 0.060
Flickr Recall@15 0.183 0.174 0.173 0.186 0.186 0.223 0.201 0.221

NDCG@15 0.132 0.128 0.126 0.133 0.133 0.159 0.143 0.155

– The performance of our SSR is much better in the more sparse datasets like Yelp
and Flickr. It is reasonable because our SSR enriches the sparse domain by self-
supervised learning.

4.3 Efficiency Analysis on Benchmarks (RQ2)
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Fig. 2. Left: the training time of social recommendation methods on public bench-
marks; Right: the performance and training time on large-scale industry dataset.

We plot the training time per epoch in Figure 2 left, where only the performance
of social recommendation models are shown since only these model uses both social
network and recommendation network. In the smallest dataset Last.fm, the training
time of all methods including our model and baselines are very close. However, our
training time is significantly reduced when the datasets become larger (i.e., Yelp and
Flickr). And Diffnet++ and MHCN are two of the most time-consuming methods. It
demonstrates the scalability of SSR.

4.4 Performance and Efficiency Analysis on Industry Dataset
(RQ3)

In this section, we will demonstrate SSR’s ability to handle real industry datasets
Industry with ten million scale. For the time limitation, we only run a base graph
attention-based GNN on a social recommendation as baselines. To make the GNN
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runnable on this dataset, we randomly sample ten neighbors for each node like Graph-
Sage [2]. Since the first part of our model is pre-processed offline and only the second
part of our model is updated daily, we only count the time of the online part of our
model. The results is shown in Figure 2 right. We can see SSR achieves better per-
formance than the baseline GNN in the left bar graph. Besides, the GNN takes much
more time (about 9 times) than SSR in the right bar graph.

4.5 Ablation Analysis (RQ4)
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Fig. 3. Left: the relative improvement of SSR over SSR w/o Gumbel attention; Right:
the relative improvement of SSR over SSR w/o self-supervised part.

Impact of social selection by Gumbel attention. The effect of social selection
by Gumbel attention is shown in Figure 3 left. We change SSR into a variant, Adj,
which changes the Gumbel attention into a normal adjacency matrix in the first stage. It
measures the effect of denoising in social networks. In the figures, we plot the relative
improvement over the variants. We can see that SSR performs the best among the
variants on all datasets. It demonstrates that the selection of noisy social relations is
necessary for social recommendations.

Impact of the self-supervised module. The effect of the self-supervised module
is shown in Figure 3 right. We change SSR into a variant, -InfoNCE which deletes the
infoNCE loss in the second stage. It measure the importance of enriching the sparse
domain by self-supervised contrastive learning. The SSR performs consistently better
than the variant. It also proves the importance of the self-supervised module.

5 Conclusion

In this paper, we propose a scalable two-stage social recommendation framework named
SSR. We decouple our model into two stages, Gumbel-based feature propagation and
self-supervised multi-representation, for offline pre-training and online daily updating
respectively. In the first stage, we pre-train a model by Gumbel attention to learn the
importance of neighbors and propagate the features with multiple propagation layers.
In the second stage, we fuse the pre-processed features and use contrastive learning to
enrich the representability. Extensive experimental results demonstrate the scalability
and effectiveness of our framework.
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