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Abstract. Fraud transaction detection is a pressing need in industrial
applications, aiming to detect the fraud for a transaction involving the
buyer and the seller. Due to the prohibitive cost of accessing appropriate
labels for the task in a supervised fashion, unsupervised anomaly de-
tection has become an alternative solution. However, previous methods
mainly handcraft some features to detect the fraud on a single entity,
which neglects the dynamic and topological nature between the buyer
and the seller within the transaction. In this paper, we propose a novel
Temporal Structure Augmented Gaussian Mixture Model (TSAGMM)
for unsupervised fraud transaction detection on dynamic attributed net-
works. Specifically, we propose a time-encoded graph autoencoder to
utilize both the topological structure and temporal information within
the dynamic transaction graph to reconstruct the node attributes and
graph topology. The learned latent representations as well as reconstruc-
tion errors are combined and fed into a density-based model for unsuper-
vised fraud detection. Experimental results on the real-world transaction
dataset from Alipay show the superiority of our proposed method among
the state-of-the-art methods.

1 Introduction

In recent years, convenience facilitates the explosive growth of e-commerce and
the booming of e-payment, while the underlying issue of the fraud transaction
is not negligible. Indeed, the health development of online financial service is
greatly threatened by various kinds of fraud transactions, ranging from cash-out
fraud transaction [9] to malicious default fraud. In order to alleviate the negative
impacts (i.e., incalculable risk-related damages and losses) on individuals and
enterprises, fraud transaction detection has been an increasingly emerging topic
in industrial applications, aiming at safeguarding the capital security in the face
of fraudulent behaviors.

As the core component of ensuring a healthy environment of online financial
services, recent years have witnessed a fruitful line of research in the field of the
fraud transaction detection, and attain considerable success[17, 3,1, 18]. Earlier
works mainly focus on the exploration and exploitation of numerous rules sum-
marized by fraud analysts. Unfortunately, the rapid change of fraud patterns
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Fig. 1. A real showcase of fraud transactions for aiming at cash out. The two cash-
out buyers have created multiple transaction interactions with particular suspicious
merchant in a very close period. And the two buyers also have transfer relations before.
The two buyers and the seller are in a group aiming to do cash-out.

is inherently difficult to be fitted with pure rules, hindering the effectiveness.
Subsequently, attentions for the fraud transaction detection have been gradu-
ally shifted towards machine learning based methods, which could be roughly
categorized as tree-based models, deep learning based models or graph-based
models [1,10,18,12]. Notwithstanding the competitive performance for auto-
matically uncovering fraud patterns from the data, they still face the following
two unresolved limitations:

— Individual-level detection with static structure. Previous works mainly
perform the transaction fraud detection in the individual level (i.e a buyer
or a seller), which commonly ignore the fact that transactions involve both
buyers and sellers. On the other hand, fraud transactions intuitively reveals
abnormal patterns in the temporal perspective (e.g., transactions with high
frequencies), as shown in Fig. 1. Therefore, the temporal structure associ-
ated with a transaction could be a highly discriminative signal for suspicious
behaviors

— Supervised detection paradigm. Most of current methods follows the
supervised learning paradigm, whose success greatly hinges on large amounts
of labeled data. However, in practical scenarios, fraud labels are usually
difficult to obtain and insufficient training data also result in a serious data
noise problem. Such an inevitable dilemma severely restricts the performance
of detection methods with the supervised paradigm.

To address the challenges discussed above, we strive to frame the fraud trans-
action detection in the setting of unsupervised anomaly detection problem with
dynamic attributed graphs. In particular, we propose a Temporal Structure Aug-
mented Gaussian Mixture Model (TSAGMM for short) to comprehensively
extract the temporal and structural nature of the dynamic transaction graph
to detect the transaction-level frauds. In detail, we build TSAGMM upon the
general encoder-decoder framework, where a graph neural network encoder with
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a temporal component explicitly characterizes temporal and topological struc-
ture, while a graph reconstruction decoder further aims at the reconstruction of
the both topological structure and node attributes. Subsequently, we fuse ob-
tained representations of sellers and buyers, coupled with reconstruction errors
into an unified transaction-level representation, and then feed it into a density
estimation model for unsupervised fraud detection.

In summary, we highlight the main contributions of this paper as follows:

e Problem: As far as we know, we are the first to investigate unsupervised
fraud transaction detection in transaction level under dynamic attributed
graphs.

e Model: We propose TSAGMM, a novel unsupervised graph model to detect
the complex fraud patterns based on the temporal and topological transac-
tion behaviors..

e Evaluation: Experimental results on a real-world transaction dataset in
Alipay prove the effectiveness of our proposed model.

2 Related Work

2.1 Fraud Transaction Detection

In the domain of fraud transaction detection, previous methods usually treat
each transaction independently and train supervised models like support vector
machines, random forests, etc. [1,18]. Structural information in these methods
if applicable, are usually incorporated as hand-crafted features, which are diffi-
cult to model subtle interaction information effectively. [12] proposes to use the
transaction-intention network to capture the information over transactions and
intentions with additional user behaviour sequence data. However, the method
is in a supervised fashion to detect some specific patterns of fraud. Furthermore,
it performs fraud detection on buyers or sellers, which overlook their coupling
effects within the transactions.

2.2 Unsupervised Anomaly Detection

Anomaly detection is one of the common anti-fraud approaches in data science.
Tremendous effort has been devoted to unsupervised anomaly detection [3] for
tabular data, such as statistical techniques, density-based methods, clustering
based methods and so on. Popular used techniques are local outlier factor[2],
isolation forest [13], one-class support vector machine [4] etc. Recently, deep
learning approaches [16] usually outperform traditional methods for multivariate
and high dimensional data. These methods typically can be categorized as a
family of encoder-decoder models. The representative is DAGMM [25]. However,
all of these methods do not consider the complex interaction patterns for the
transaction scenario between the buyers and sellers.
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2.3 Graph based Anomaly Detection

Recent years have seen significant developments in graph neural networks (GNNs)
and GNN-based methods are applied to the anomaly detection field [14]. Most
of these methods focus on node fraud detection [5,24,22]. Only a few methods
focus on edge fraud detection. For example, [15,6,22] focus on the edge fraud
detection on static networks. [21, 23] are supervised anomaly edge detection on
dynamic networks. In our setting, we treat transaction-level fraud detection as
an anomalous edge detection problem without any supervision in the dynamic
attributed graphs, which is rarely explored before.

3 Preliminary

We first define the dynamic attributed network in the following ways:

Definition 1. A dynamic attributed network G = (V,E, X, H) consists of: (1)
the set of nodes V = {v;}¥| including the buyers and sellers; (2) the set of edges
E = {e;;} denoting the relation between node i and node j with the timestamp
t = t;;. Here the relation in our problem contains the transfer relation between
buyers and trade relation between the buyer and the seller; (3) the node feature
matriz X where the it" row vector X;. denotes the attribute information for the
i*" node; and (4) the edge feature matric H, where each element H;; denotes the
features of the edge e;;.

It is worth noting that there may be multiple edges between two nodes in dy-
namic attributed networks, indicating there are multiple transaction or transfer
events occurring between nodes. Then the topological structure of dynamic at-
tributed network G can be represented by an adjacency matrix A, where A;; = k
if there are k edge events occurring between node v; and node v;. Otherwise
A;; = 0 if there is no edge between node v; and v;.

Then our problem can be defined here:

Definition 2. Unsupervised fraud transaction detection on dynamic attributed
networks: Given the dynamic attributed network G, a transaction involving a
buyer, denoted as B, and a seller denoted as S, unsupervised fraud transaction
detection aim to predict the fraud score sp s(G) only based on G.

4 The Proposed Model

In this section, we introduce our proposed method TSAGMM in detail. As
shown in Fig 2, our model consists of three components: (1) The time-encoded
graph encoder to model the temporal-structural information within the dynamic
attributed graph. (2) The graph reconstruction part to restore the node at-
tributes and graph structure for unsupervised graph learning and (3) The gaus-
sian mixture model to do density-based fraud detection. Since the learning pro-
cess of graph autoencoders for buyers and sellers are quite similar, we then
mainly introduce buyers’ as an illustration for space saving.
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Fig. 2. The overall architecture of the Temporal Structure Augmented Gaussian Mix-
ture Model (TSAGMM) for unsupervised fraud transaction detection.

4.1 Time-encoded Graph Encoder

We propose a time-encoded graph encoder with the attention mechanism to
combine the temporal and structural information to learn node representations
in a GNN manner. Supposing v; is the target node at time ¢, it will aggregate
the information from neighboring nodes via the following forms:

Zi(t) = Y gtz (0), (1)

JEN(t)

where z.(t) denotes the node embedding at layer [ for node v;, and 2z = f(X;)),
where f ( ) denotes a DNN-based model to compress the original node features.
N;(t) denotes the neighbors of node v;, whose interaction with v; takes place
at time prior to t. 7; ;(t) denotes the attention value to aggregate the repre-
sentations from neighbor v; to v;, whose calculation process will be introduced
later.

In particular, our proposed aggregation process not only considers the neigh-
bors’ features and edge features as common GNN models do, but more impor-
tantly considers the temporal information on each edge. To achieve the idea, we
define a functional time encoding technique to represent the time as a combina-
tion of several periodic functions [20]:

D4(t) = \/g[cos(wlt)7 sin(wit), . .., cos(wqt), sin(wgt)] (2)

parameterized by the frequency set {w1,...,wq}.
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Then the attention coefficient between target node ¢ and neighbor node j is
computed as follows:

ai,j(t) = attn(q;(t), k; (1) = o(a’ [Wsai(t) + Wak; (1)),

ai(t) = [z~ (1) [ 0 || 2a(0)], 3)

k(1) = [25 ' (t) | Hij || @alt — ti;)]
where || denotes the concatenate operation, o(-) is the tanh activation function,
attn(-) denotes the attention function parameterized by a, W and W. Then,
the attention value 7, ; can be achieved through the softmax function:

exp(ei,;(t)) )

2k () XP(@i k(1))

Vi, (t) =

In our model, we use a two-layer time-encoded graph encoder to obtain
the node embedding Z = {z2(¢;)}Y,, which aggregates neighbors’ information
within two hops.

4.2 Graph Reconstruction

Then we use the learned node embedding Z to reconstruct both the original
node features and the adjacency matrix, aiming to make the model preserve the
node attribute information and the graph topology.

In detail, we first use a DNN transform g¢(-) to project the node embedding Z
into the feature reconstruction space X = 9(Z;6,). Then given original node fea-
ture X and reconstruction node feature 5(7 we define the feature reconstruction
error as: Ay = [d.,d.] where d. and d. are the Euclidean distance and cosine
similarity respectively between X and X.

Another part aims to reconstruct the original network topology. The re-
construction adjacency matrix is calculated as the inner product between two
node embeddings A = ¢(ZZT), where o(-) is the sigmoid function. Then the
structure reconstruction error is given by d, = [|A;. — A; |2, where A is the
row-normalization of A.

The overall loss function for graph reconstruction is given by:

recon =

HMZ

( (XX) +d, (XX) +d, (Ai,,Ai)) (5)

4.3 Density Estimation

Fraud transactions often consist of abnormal information regarding its buyer
and the seller. Therefore, to detect fraud transaction, we obtain the transaction
representation by combining the obtained node embedding and reconstruction
errors from both the buyer and the seller: z7 = [25, Ajlf,zs, A‘?] It is worth
noting that feature reconstruction errors for the buyer and seller can characterize
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their own anomaly scores, because a good reconstruction-based model will focus
on reconstructing the normal patterns, resulting in a larger reconstruction errors
for anomaly data. Therefore, we also combine the feature reconstruction errors
with the node embedding for the buyer and seller for fraud detection.

Without labels, we consider using the density-based methods for fraud de-
tection. We assume that normal transactions can be modelled by a mixture of
gaussian models, while the fraud transactions will be far-away from the combi-
nation of these gaussian distributions. Based on the assumption, we first predict
its soft mixture-component membership prediction given the number of mixture
components K: 4 = softmax(h(z” ;6,)) , where h(-) is a multi-layer neural net-
work parameterized by 6. By traversing all the samples, we can estimate the
mixture probability q@k, the mean value iy, the covariance matrix 3, for each
component k in GMM respectively [25]. The sample energy can be inferred by:

K exp(=L1(z7 — )T S 2T — i
E(ZT) _ —10g(2§£k p( 2( fur:) Xy ( Nk))) (6)
k=1

\/ 127 ]

4.4 Model learning and Fraud Detection

To jointly learn the reconstruction errors as well as GMM estimation, given a
batch of N transaction data, the training objective function of our proposed
model can be formulated as:

A R
=1

This objective function includes three components: (1) the first two terms denote
the graph reconstruction errors for the buyer and seller. (2) E(z]) is the energy
defined in Eq. (6). It describes how possible we could see the transaction samples
in the whole training dataset. (3) To avoid trivial solutions when the diagonal
entries of covariance matrices degenerate to 0, we penalize small values of the
diagonals by the fourth component P(ﬁ') = 22{21 > j ﬁ as a regularizer.

In the prediction phase, the sample energy is then eJranloyed to assess the
abnormality of the transaction data.

5 Experiments

To demonstrate the effectiveness of the proposed method for fraud transaction
detection, we conduct comprehensive experiments and present the result.

5.1 Experiments Setup

Evaluation Dataset With the real-world transaction datasets from Alipay, we
sample about 30 million transaction data completed by credit pay in one month
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for training, and the next month for evaluation. The dynamic graph which con-
tains fund transfer relations between buyers and transaction relations (including
credit pays and non-credit pays) between buyers and sellers, has around 70 mil-
lion interactions per day. For each transaction, we sample two-hops dynamic at-
tributed subgraphs centered by both the buyer and the seller respectively, within
7 days before the creation time of the transaction. We extract 43-dimension fea-
tures for each user, including user profile, credit history, platform behaviors.

Evaluation Metrics Since there is no direct labels for the transactions, we
collect the evaluation labels from business expert and from buyer and sellers’
behaviors a few months later. In all, about 0.6% of the transactions are fraudulent
for the evaluation. We select Precision, Recall, F1 score and the LIFT@Qk% as
the evaluation metric. The LIFT@Qk% measure means the ratio between the bad
rate of the top k% transactions with the average bad rate of all transactions.
We use this metric because fraud detection usually focuses more on the results
ranking ahead.

Comparing Methods To show the performance, we compare our proposed
model TSAGMM with three lines of unsupervised methods: popular tradi-
tional methods on anomaly detection, NN-based methods and GNN-based meth-
ods. The first line contains LOF (Local Outlier Factor[2]), OC-SVM (One-class
support vector machine [4]) and iForest (Isolation Forest [13]). NN-based meth-
ods contains reconstruction-based method DAE [19] and density-based method
DAGMM [25]. Note that we choose these five methods as representatives be-
cause according to [8], these five methods perform good and stable. To make
fair comparisons, we extract topology features like degree and the average of
neighbors’ features and combine them with the basic node features as the node
features for these five methods. For graph-based baseline methods, since there is
no existing unsupervised graph-based methods for edge-level fraud detection, we
combine Graph Autoencoder [11,7] and our temporal encoder to form TGAE.

Since LOF and OC-SVM don’t scale well, we sample 1% from training dataset
for these two methods. We set n_neighbors=10 for LOF and use RBF kernel in
OC-SVM. For iForest, we use 100 trees to train. For all deep autoencoding
instances, the embedding dimension is set as 8 with three hidden layers (32-
unit, 16-unit and 8-unit, respectively). Moreover, we set the number of GMM
components is 3 and set A\; as 0.1 and As as 0.001 as they render desirable
results. In addition, two time-encoded graph attention layers are employed for
our proposed models. We use Adam algorithm to optimize the loss function with
the learning rate 0.001 and set batch size to 1024.

5.2 Offline Results

We present the results for each method in Table 1. We report the best F1 score
with corresponding Precision and Recall, as well as the top 1% and 2% LIFT
metric. The major results are summarized: It is worth noting that because of
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Table 1. The performance in the evaluation dataset of credit transactions (best F1
score with corresponding Precision and Recall, as well as LIFT metrics). We also report
the relative improvement ratio of our proposed model over all baselines.

Methods ‘Precision Recall F1 score ‘Lift on topl% Lift on top2%

LOF | 1.26% 6.17% 2.09% (4+276%)|2.49 (+318%) 2.13 (+267%)
OC-SVM | 2.59%  8.45% 3.96% (+99%) |4.72 (+121%) 4.23 (+85%)
iForest | 3.65% 12.02% 5.60% (+40%) | 6.80 (+53%) 6.02 (+30%)

DAE | 1.02% 11.71% 1.87% (+321%)|1.68 (4+520%) 1.70 (+360%)
DAGMM | 4.12% 13.58% 6.32% (+24%) | 7.59 (+37%) 6.75 (+16%)
TCGAE | 2.70% 8.91% 4.15% (+90%) | 5.28 (+96%) 4.45 (+73%)

TSAGMM| 6.31% 10.41%  7.86% | 10.41 7.82

high class balance, the absolute values of precision, recall and F1 are not very
high. But the F1 score of our proposed method still outperforms the compar-
ing methods by at least 24%, which demonstrates the superiority of the overall
performance of our method on fraud detection. Furthermore, we further find
that our method achieves at least 35% and 15% improvement on Lift@1% and
Lift@2% compared with all baseline methods. It is very important for real-world
scenarios because fraud detection usually cares more about the entities ranking
very ahead. In addition, we note that although TGAE utilizes the graph data,
it performs not good. It demonstrates that designing a sophisticated component
for unsupervised fraud detection is very important. In summary, the perfor-
mance improvement demonstrates our model is able to capturing temporal and
structural information effectively for fraud transaction detection.

5.3 Ablation Studies

We conduct the ablation studies to explore the impact of the main components
of TSAGMM. Comparing methods are shown as follows:

Table 2. Ablation studies in the evaluation dataset of credit transactions.

Methods ‘Precision Recall Fq ‘Lift on topl1% Lift on top2%

TSAGMM | 6.312% 10.410% 7.859%|  10.41 7.82
TSAGMM sd| 5.733%  9.457% 7.139 % 9.46 6.88
TSAGMM_te| 5.610 % 9.254% 6.985% 9.25 7.23

TGAE | 2.701% 8.910 % 4.145% 5.28 4.45

¢ TSAGMM _sd removes the graph structure decoder reconstruction module.
¢ TSAGMDM _te removes the time encoder part in the encoder function.
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Fig. 3. ROC curves and AUC scores for ablation studies.

We report the results of ablation studies in Table 2 and Fig 3. Specifically,
the performance of TSAGMM _sd and TSAGMM _te drops because the effects of
the structural and temporal information are not fully exploited. For TGAE, the
result shows the density estimation part is critical for fraud detection. Overall,
we can clearly observe that full TSAGMM achieves the best result.

5.4 Performance in Online Environment
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Fig. 4. The deployment of TSAGMM for the online credit transaction service in Alipay.

We deploy the proposed TSAGMM into the online environment of Alipay
and report the online results. As shown in Fig 4, TSAGMM is trained offline
every month and then deployed into online environment for serving. Then once
a buyer issue a new credit pay request with a seller in the online serving, the
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retrieval module are employed to extract node features and subgraphs associated
with the request efficiently. Then TSAGMM predicts the anomaly score for the
request. Together with other online strategies, the system would return the final
decision, i.e. approve or block, to the transaction for the credit pay request.

Since we block high-risky transactions in the online environment, we use the
repay rate, RP rate for short, as an important online metric. Once the system
denies the credit pay request, risky buyers usually close the transactions, while
normal buyers would continue to complete the transactions by other means of
payments, e.g. debit cards. Therefore, the lower RP rate is, the more risky the
transactions are. The average RP rate of online baseline strategy is 27.3%, while
our proposed TSAGMM can detect additional highly risky transactions with
RP rate 7.8%. Moreover, we randomly extract 100 samples from top ranked
transactions and have a check by business experts. The results are as follows: 77%
are abnormal (aiming to cash out or fraudulent), 10% are suspicious and 13%
are misjudgements. Fig 1 shows a real abnormal transaction example detected
by TSAGMM model for cashing out.

6 Conclusion

In this paper, we propose a novel time-encoded graph autoencoding gaussian
mixture model for unsupervised fraud transaction detection on dynamic at-
tributed networks. Specifically, we propose a time-encoded graph autoencoder to
model the topological structure and temporal information within the dynamic
transaction graph. The learned node representations and reconstruction errors
are combined for density estimation to perform the fraud detection. Experimen-
tal results on the real-world transaction dataset from a credit payment service
institute show the superiority of our proposed method among the state-of-the-
art methods. The future work will focus on more types of nodes like devices to
link users better.
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