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Abstract—To reduce the customer service pressure of small
and medium-sized enterprises, we propose an intelligent cloud
customer service system, called IntelliTag. Unlike traditional
customer service, a cloud service based system has difficulty in
collecting user personal information. Therefore, we add a tag
recommendation function to quickly capture the user’s question
intent by clicking on the tags. Specifically, IntelliTag is elaborately
designed with the consideration of the following three aspects.
First, how to mine high-quality tags is a challenging problem.
Second, in the tag recommendation tasks, we have multifarious
data types and relations that are used to build a sequential
recommendation model. Finally, system implementation and
deployment also need to be carefully designed to satisfy online
service requirements. In this paper, we show the details of
data construction, model designs, system implementation and
deployment, and the empirical results compared with several
state-of-the-art methods. Nowadays, our IntelliTag has already
supported hundreds of thousands of enterprises and millions of
users in our industrial production environment.

Index Terms—intelligent customer service, chatbot, tag recom-
mendation, graph neural network, sequential recommendation

I. INTRODUCTION

In recent years, intelligent customer service has achieved
great success in large enterprises, significantly reducing labor
costs and improving response efficiencies, such as Microsoft’s
Superagent [11], Alibaba’s AliMe [66], JD.com’s JIMI [99]
and etc. However, it is not an easy thing for most SMEs
(Small and Medium-sized Enterprises), due to the limitation
of their technical capabilities and capital reserves. As a result,
manual customer service often brings them higher operating
cost conversely.

The traditional intelligent customer service dialogue system
is capable of collecting user personal information and histor-
ical behavior trajectories to understand the user’s intention of
questions [5], [11]. For example, in the area of E-commerce,
a user has only one online purchase record in the past few
weeks, and checked the logistics situation of the product before
inquiring about customer service. Based on such information,
intelligent customer service can easily infer that the user is
most likely asking about the purchased items’ logistics. In
contrast, it is difficult for a cloud service based system, since
assessing user’s data in products is impossible due to data
privacy reasons.

To address this problem, we aim to introduce a better inter-
active mode besides regular Q&A (Question and Answering)
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Fig. 1: The interface of our system based on tag recommenda-
tion. The left subfigure demonstrates the user’s question and
recommended tags. After clicking the second tag “apply”, a
new set of tags and predicted questions are recommended in
terms of user’s intent in the middle subfigure. And the final
answer to the user’s question is shown in the right subfigure
after the user clicks on the predicted question.

dialogue, which is able to take advantage of the information
in a consultation session. Based on our investigation, several
newly emerging chatbot assistants [47] have a tag feature,
where a user gets answers by clicking recommended tags. In
light of this idea, we add tag recommendation into our system,
as illustrated in Fig. 1, where the shown tags are suspended
in the input message dialogue box. By user’s clicked tags, we
can quickly speculate the user’s intent of questions.

In this scenario, we create an intelligent cloud customer
service system with tag recommendation, known as IntelliTag.
While SMEs, also called “tenants”, can rent our customer
service through cloud service at a meager rate. Without the
user’s personal data, we collect historical interactive behaviors
in sessions, besides Q&A dialogues. The core of the first
problem is how to mine useful and suitable tags efficiently
and accurately.

On the task of tag mining, we aim to extract complete,
representative and question-related tags, where a tag contains
one word or multiple words. Therefore, two subtasks need
to be solved: one is to distinguish tag boundary for its
completeness, and the other is to measure tag’s representative
and relatedness to questions. Compared to two single-task



solutions, multi-task learning looks more promising due to
their potential relationship of text semantics.

More important and difficult is TagRec (Tag Recommenda-
tion) task. Recently, session-based recommendation methods
[85], [87] obtain satisfactory results to recommend products
and movies. Moreover, sequence-based approaches [39], [73]
are good at modeling sequences in the recommender system.
However, it is still challenging to extract fruitful information
from our various data and address a sequential recommenda-
tion problem. Besides, conventional sequential recommenda-
tion suffers from cold start issues.

From the model perspective, we collect multifarious data
types and relations, where a heterogeneous graph ought to
be constructed for reducing the impact of data sparsity in
cold start. On the one hand, a heterogeneous graph can also
alleviate the long tail problem to a certain extent, since it
explores the topological information of unpopular tags in a
network. On the other hand, the valuable sequential clicks’
information also deserves careful consideration. We propose
a novel hierarchical end-to-end model based on multiple at-
tention mechanisms, which leverages node attention, metapath
attention and contextual attention to respectively measure the
relationship between different node neighbors, the importance
of information transmission paths and the influence of sequen-
tial behaviors.

Further, system implementation and deployment are also
crucial to real-world industrial customer service. Our online
service, including response to answers, recommended tags
and predicted questions, should be finished within tens of
milliseconds. Nowadays, our deployed system in an indus-
trial production environment has already supported hundreds
thousands of SMEs and millions of users, where more than
ten thousand customer questions are solved every day.

Our contributions can be summarized as follows:

• To the best of our knowledge, it is the first work to reveal
model and system details of intelligent cloud customer
service with tag recommendation deployed in the real
world;

• An automatic way is introduced to collect Q&A pairs, and
a new BERT-based multi-task learning model is proposed
to mine valuable tags;

• We propose a novel model for tag recommendation,
which significantly outperforms several state-of-the-art
baseline algorithms both on offline and online evalua-
tions;

• System implementation and deployment details are un-
covered, which guarantees online service timely response
with about 100 ms.

II. RELATED WORK

In this section, we review related studies in Q&A chatbot,
tag recommendation, graph neural network based recommen-
dation and sequential recommendation.

A. Question and Answering Chatbot

Intelligent personal assistant, such as Microsoft’s Cortana1,
Amazon’s Alexa2, Apple’s Siri3, Baidu’s Xiaodu4 and Al-
ibaba’s TmallGenie5, provides new human-computer interac-
tion experience to help people complete their daily affairs.
As a comparison, intelligent customer service system, such as
Microsoft’s SuperAgent [11], Alibaba’s AliMe [66], jd.com’s
JIMI [99] and Ant Financial’s AntProphet [5], aims to solve
the user’s questions about products and services. Our IntelliTag
helps SMEs solve their customer service issue through its
cloud service. From a technical perspective, rule-based and
template-based methods were first explored [82], [84]. Data-
driven approaches have recently achieved promising perfor-
mance, and two mainstreams are gradually formed, including
information retrieve [38], [40], [90], [91] and sequence-to-
sequence generation based techniques [48], [49], [71]. How-
ever, most previous studies focus on the dialogue system and
seldom explore tag recommendations in this field.

B. Tag Recommendation

Tag recommendation, as a problem of recommendation area,
are often divided into two main categories: user-centered and
tag-centered cases. The former builds the foundation on the
user’s personal data to predict tags. Multilayer perceptron
models were first applied to address the problems in recom-
mender systems, such as Wide and Deep [9], auto-encoder
[79], deep semantic neural networks [88], [89]. Factorization-
based methods [28], [70] were later introduced and achieved
better effectiveness. In contrast, the task of tag-centered rec-
ommendation mines the associated relationship between tags
and documents. Besides efficient linear FastText [43], CNN
(Convolutional Neural Network) was introduced to measure
the semantic information [83]. Also, LSTM (Long Short-Term
Memory) based models [51], [98] were adopted to characterize
the sequential nature of the text, and more methods with
attention were introduced to describe the importance of local
information [26], [52], [58]. Our task locates in a tag-centered
scenario, different from previous studies due to the integration
of various information.

C. Graph Neural Network based Recommendation

A graph is a kind of data structure to build a bridge between
different types of entities. In recent years, GNN (Graph
Neural Network) based approaches attract much attention.
Several unsupervised learning based models [3], [15], [27],
[64] were first proposed to generate node embeddings using
the topological information of graph structure. With the full
use of label information, graph convolutional network based
approaches [30], [45], [61] achieved better performance. To
characterize the fine-grained interaction in graphs, various
attention based GNNs are proposed to locate important or

1https://www.microsoft.com/en-us/cortana
2https://developer.amazon.com/en-US/alexa
3https://www.apple.com/siri
4https://dumall.baidu.com
5https://en.wikipedia.org/wiki/Tmall Genie



TABLE I: Illustrated examples for our mined tags.

Tags RQs in Q&A pairs
change, password How to change password?

apply for, ETC card How can I apply for ETC card?
cancel, order Where to cancel the order?

charge, phones Can I charge multiple phones simultaneously?
initial VPN password What is the initial VPN password?

relevant neighbors in an end-to-end manner [55], [78], [96].
Recently, several efforts [19], [21], [23], [35], [42], [80], [95]
are also made to learn effective representations on heteroge-
neous graphs or knowledge graphs for recommendation. To
solve session-based recommendation problems with GNNs, a
series of approaches [8], [67], [81], [85], [87] are proposed
and achieve considerable performance improvement. Further,
recently proposed efficient graph databases [2], [14], [20],
[29] and industrial-scale graph learning systems [7], [41], [92]
provide effective support to various commercial scenarios in
the real world [4], [53]. Nevertheless, most of them hardly
measure sequential data.

D. Sequential Recommendation

In a session of our customer system, the interaction with a
user is regarded as a sequential process, so we also investigate
related literature in the area. Early algorithms were mainly
based on Markov Chains, such as Markov decision processes
[65] and factorizing personalized Markov Chains [69]. With
the popularity of RNN (Recurrent Neural Network), LSTM
and GRU (Gated Recurrent Units) become mainstream models
for sequence recommendation, such as DREAM [94], user-
based GRU [16], NARM [50] and GRU4Rec [39]. Following
this line, a surge of variants are proposed to make more
subtle feature extraction for sequences with memory network
[36], [37], [57], reinforcement learning [86], self-supervised
learning [97], ensemble learning [63] and so on. Most recently,
BERT-based approaches [13], [73] achieved state-of-the-art
results in sequential recommendation. These methods aim to
measure the property of sequence but fail to leverage our task-
related information.

III. TAG MINING FROM KNOWLEDGE BASE
DOCUMENT COLLECTION

In this section, we describe our proposed method of mining
suitable tags on tag mining task. Different from the traditional
social tagging tasks [25], [62], our goal is to mine representa-
tive and question-related words as tags from dialogue corpus.

A. Knowledge Base Document Collection

Consistent with traditional customer service, our IntelliTag
supports Q&A dialogue feature. Following IR (Information
Retrieve) -based approaches [90], we collect Q&A pairs and
write them into KB (Knowledge Base) document warehouse,
where each pair contains a question and its corresponding
answer. When a user proposes a question, we first retrieve

Fig. 2: The model of our BERT-based multi-task learning. “B”
and “M” in gray rectangle indicate the word position at the
Begin and in the Middle respectively.

the most possible RQ (Representative Question)6 from KB
document and feedback the answer. More importantly, our
recommended tags also originate from such document.

Industrial customer service made by large enterprises can
precipitate massive Q&A pairs, as for long-term experience
accumulation by manual customer service. For each of our
tenants, we provide an interface so as to upload their self-
ordained frequent Q&A pairs. However, according to our
statistics, only a small amount is added in this way, probably
because it takes a lot of time and energy, but most SMEs do
not have adequate energy for operations.

To address this problem, we design an automatic Q&A
pairs collection way. First, we mix user’s frequently proposed
questions and RQs and utilize Transformers [77] to generate
text embeddings which are subsequently fed into DBScan [18]
to obtain question clusters. For each of the clusters, if there
is not even an RQ, we randomly choose a user’s question
as a new one. Next, we select the user’s high-rated content
to questions replied by manual customer service, and apply
machine reading comprehension [6], [31], [68] to find out
suitable answers. Finally, new Q&A pairs will be continuously
uploaded into our KB document warehouse.

B. Tag Mining from Knowledge Base Document

As we gradually accumulate massive Q&A pairs, we aim
at mining tags that quickly capture the intent of the user’s
questions. As illustrated in Table I, tags could be a one-word
or a multi-word term exploited from RQs, such as “change”
and “apply for”, which should be complete, representative and
question-related. To mine suitable tags from massive RQs, we
have to face two tasks, i.e., tag segmentation and weighting.
Tag segmentation task is to discover tag boundary, and tag
weight is a defined metric to measure question representative
and relatedness.

Intuitively, these tasks are highly related to text semantics,
so we decide to adopt multi-task learning. We propose a novel

6To conveniently distinguish the questions in KB document and the
questions proposed by users, we use “representative question” to denote the
former, but we continue to use the common expression of “Q&A pair(s)”.



BERT [13] -based multi-task model that jointly learns tag
segmentation and word weighting simultaneously. As shown in
Fig. 2, we feed the sentences of RQs as the input of the model,
which outputs the predicted results of two tasks. Afterword
weights are obtained, we average the values of word weights
within a tag as tag weight. Finally, the tags with a weight
greater than the preset threshold are retained. The task of tag
mining is closely related to phrase mining, whose goal is to
excavate suitable phrases from the documents. Different from
traditional phrase mining methods [12], [17], [72], our BERT-
based model can extract deep semantic information with its
multiple neural network layers from the labeled sentences, and
the knowledge is also fully exploited by the pretrained model
with massive unlabeled corpora.

To further purify preliminary tags output by the model,
we deeply consider several simple but effective rules as post-
processing from the following aspects: (1) tag weight measures
question representative and relatedness, which we obtain from
the proposed model; (2) tag frequency indicates the importance
of tag words that we calculate based on the whole KB
document; (3) tag IDF (Inverse Document Frequency) is a
critical information indicator to measure the influence of a
tag; and (4) averaged PMI (Point-wise Mutual Information)
[10] between any two words in a tag, reflects word’s semantic
consistency within a tag.7

In a consultation session, the user’s successive clicked tags
are composed as a query, which we use to retrieve a question
list from RQs as predicted questions, as early demonstrated
in Fig. 1. Since there is a lot of new daily questions, we
need to perform the inference process of the model and
generate tags every day. It is a remarkable fact it takes much
time for BERT inference process. Motived by [32], we adopt
knowledge distillation, which is much faster with little change
in accuracy. We will report the effectiveness and efficiency
results in Section VI.

IV. THE DESIGN DETAILS OF OUR MODEL
ON TAG RECOMMENDATION TASK

In this section, we construct a heterogeneous graph with
a variety of types and relations, and elaborately analyze tag
information transmission in the graph. Further, we propose a
novel end-to-end hierarchical model, called TagRec model.

A. Heterogeneous Graph Construction and Metapath Design

We have already described the process of mining tags
from RQs, where their association relation was naturally
established. Based on our analysis, most data of low-frequency
tenants is very sparse, so we aggregate RQs from different
tenants. Until now, there are three different types: T (Tags),
Q (RQs), E (tEnants). We then build four kinds of relations
described as follows:
• asc: association relation between tags and RQs (T-Q),

which represents inclusion relation between them;

7We simply set the same weight for each rule.

• crl: correlation relation between RQs and tenants (Q-E),
which describes mapping relation between them;

• clk: co-clicking relation between two tags (T-T), which
indicates a user’s two successively clicked tags in a
session;

• cst: co-consulting relation between two RQs (Q-Q),
which expresses two retrieved RQs with a user’s two
successively proposed questions.

Relations are built on a variety of information, where
asc relation is obtained from text mining, crl relation is
established between tenants and RQs, clk and cst relation are
created by session-based interactive behaviors. We next build
a heterogeneous graph to incorporate such types and relations,
where a formal definition is given as follows:

Definition 1: TagRec heterogeneous graph. A TagRec
heterogeneous graph is a graph denoted as G = {V, E},
consisting of a node set V and an edge set E on TagRec
task. It is also associated with a node type mapping function
φ : V → A and an edge type mapping function ϕ : E → R,
where A = {T, Q, E} and R = {asc, crl, clk, cst}.

Since the goal of our TagRec task is to extract plentiful
tag information, we carefully analyze their transmission paths.
Metapath is first introduced by [75] and successfully applied
in many effective models [15], [34], [74], [80]. Based on our
analysis, we deliberately predefine four metapaths to measure
information transmission between two tags:
• TT: two connected tags are successively clicked by a user

in a session;
• TQT: two connected tags are associated with the same

RQ;
• TQQT: two connected tags are associated with two

related RQs, retrieved by a user’s successively proposed
questions;

• TQEQT: two connected tags are mined from the KB
document warehouse sourced from the same tenant.

We futher give the formal definition of TagRec metapath
and TagRec metapath set as follows:

Definition 2: TagRec Metapath and TagRec Metapath
Set. A TagRec metapath ρ is defined as an information
transmission path starting and ending with tags, in the form
of A1

R1−−→ A2
R2−−→ ...

Rl−→ Al+1, abbreviated as A1A2...Al+1,
where A1 = Al+1 = T . A TagRec metapath set is defined as
a set P of TagRec metapaths, where P = {TT, TQT, TQQT,
TQEQT}.

For example, the composite relation of TagRec metapath
TQQT can also be expressed as T asc−−→ Q

cst−−→ Q
asc−−→ T .

B. Structural Information Excavation from TagRec Heteroge-
neous Graph

We will explore and exploit valuable structural information
implied in the heterogeneous graph with neighbor attention
and metapath attention. As shown in Fig. 3, we first respec-
tively aggregate four types of neighbors to the target node t
with neighbor attention, and then incorporate the results from
different metapaths to generate tag embedding zt of node t.



Fig. 3: An illustrated example of learning tag embedding with
neighbor attention and metapath attention.

We aim to make the relatedness of two related tags higher
than other unrelated pairs, which can be converted into the
question of neighbor relationship analysis. Most intuitively, we
can directly use edge information of the graph as tag neighbor.
However, as illustrated in Section IV-A, two tags connected by
a metapath can also be treated as a certain type of neighbor,
where different metapaths mean different task implications.
Actually, an edge-based neighbor is also a special case as the
metapath is just TT.

Attention mechanism is successfully utilized in many areas,
such as image recognition [22], [60], machine translation [1],
[56] and graph neural networks [78], [80]. Motived by these
previous works, we use attention mechanism for measuring
the importance of each neighbor, called neighbor attention.
Following [34], [80], we aggregate neighbors with respect to
metapath ρ:

hρt = NeighborAttention(xt; ρ) (1)

where xt is the feature vector of node t, and hρt represents
target embedding of node t aggregated with neighbor attention
via metapath ρ.

After measuring the relatedness with node neighbors, we
next consider the influence of metapaths to target node, called
metapath attention. Motived by [34], [80], we adaptively learn
the importance of different metapaths. Given a target tag t, we
can obtain a set of representations {hρt }ρ∈P , where P is the
set of TagRec metapaths as we mentioned before. We aim
to fuse multifarious semantic information implied in multiple
metapaths for more comprehensive tag representations, which
is expressed abstractly as:

zt = MetapathAttention({hρt }ρ∈P ;P) (2)

where zt denotes tag embedding of target node t aggregated
by multi-metapath attention.

C. Sequential Modeling with Transformer Layers

With the help of hierarchical attention mechanism, i.e.,
neighbor attention and metapath attention, for capturing rich
semantics from the heterogeneous graph, we can obtain mean-
ingful embedding for each tag with structural information. In
TagRec task, it is essentially a sequential prediction problem.
Specifically, given the user’s clicked tags in a session, we aim

to predict the next click and recommend tags by means of a
ranking list. Formally, given a tag t ∈ T , where tag set T ⊆ V ,
we collect N tags successively clicked by a user as context,
denoted as C = {t1, t2, ..., tN}. Our goal is to predict the tag
probabilities exhibited at N + 1 time.

In the natural language processing area, modeling sentences
is treated as a typical sequence problem, which has been
widely explored in precious studies [24], [33], [77]. Par-
ticularly, Transformer has shown its effectiveness in many
applications for measuring sequences [13], [73]. We add each
tag embedding with corresponding position embedding and
concatenate them together. The input consists of N clicked tag
embeddings (i.e., z1 ∼ zN ), and we use Transformer layers
followed by a projection layer as the output layer to yield
predicted tag probabilities at N + 1 time:

ŷ = TransformerProjection({zi}Ni=1) (3)

where ŷ indicates tag probabilities at N + 1 time.
Finally, we impose cross entropy8 loss between predicted

probabilities and ground truth (clicked tag at N + 1 time),
and backpropagate gradient errors. More technical details are
described in Appendix Section.

D. End-to-End Training

Until now, we extract structural information from target tags
with graph-based layers, and measure sequential information
with sequence-based layers. In our design, the trainable param-
eters in the inner graph-based layer are shared, whose output
(i.e., tag embeddings) is fed as the input of outer sequence-
based layers. Specifically, during the training process, we
predict the results and calculate the loss of the model combined
with label information, and backward update Transformer
parameters. Different from the traditional step-by-step training
pipeline, we adopt an end-to-end training mode. In other
words, we further adjust the values of tag embeddings, and
propagate gradient errors to sharable graph-based layers.

V. INTELLITAG SYSTEM IMPLEMENTATION
AND DEPLOYMENT

In this section, we describe the implementation and deploy-
ment details of our IntelliTag system.

A. Implementation Details

Overall, the system has two main sections, including online
real-time service and offline periodical training and inference.
We provide two features for online service: Q&A dialogue and
tag recommendation. Through the provided interface, users
might input their questions and receive prompt responses,
and they also can easily obtain the predicted questions and
corresponding answers by clicking on recommended tags.

As shown in Fig. 4, model server and ElasticSearch9 are
two important components for supporting online service. As
soon as a user proposes a question, the interface timely reports

8https://en.wikipedia.org/wiki/Cross entropy
9https://www.elastic.co



Fig. 4: The main components of our IntelliTag system.

to the model server. While the model server further sends
a message to ElasticSearch to obtain a suitable RQs recall
set (also including the corresponding answers). Based on the
uploaded RoBERTa [54] model, the model server finds out the
best matching RQ and passes on its answer to the interface,
which is responsible for showing the final result. However, if a
user clicks on a tag, TagRec task will be triggered. The model
server first predicts a set of recommended tags, and combines
historical clicked tags in the session as a query. The query is
next sent to ElasticSearch, which will feedback an RQs recall
set. After that, the model server sends the reranked RQs list
to the interface, showing the user’s most possible predicted
questions.

On the other hand, an online interactive data log is peri-
odically downloaded to MaxCompute10, which is an offline
database developed by Alibaba Cloud. First, as illustrated in
Section III-A, MaxCompute obtains new RQs for a while, and
employs machine reading understanding models to find out
suitable answers, where the newly generated Q&A pairs will
be temporarily stored in MaxCompute. Second, as described in
Section III-B, KB document warehouse reads such generated
pairs from MaxCompute, and sends all the RQs to BERT-
based multi-task trainer. After the training process is finished,
we start the inference process with knowledge distillation.
Next, the output tags should again be filtered by our carefully
designed rules, where tag deposit stores the mined tags. In
addition, KB document warehouse ought to update the latest
Q&A pairs to online ElasticSearch.

There exist two more important training models, i.e.,
RoBERTa and TagRec model. RoBERTa model learner11 can
access the user’s proposed questions from MaxCompute, and
read RQs from KB document warehouse to train the model. At

10https://www.alibabacloud.com/product/maxcompute
11We do not describe the details in this paper, since RoBERTa is a common

model in intelligent Q&A dialogue.

the same time, as mentioned in Section IV-A, heterogeneous
graph constructor obtains tags from tag deposit and user’s
interactive behavior data, RQs and etc. from MaxCompute.
Finally, TagRec model trainer is able to learn the model with
structural and sequential data.

B. Deployment Details

As shown in Fig. 4, we have three models implemented
by PyTorch in the offline section, where BERT-based multi-
task model adopts offline training and inference. While the
others will update the models to the online model server as
soon as they finish training. In this way, the model server can
support question answering, tag recommendation and question
prediction with the latest model.

Especially for RoBERTa and TagRec models, we adopt the
“T+1” mode to offline train, which indicates we train models
every day in terms of the accumulated data from the last day. In
some scenarios (e.g., E-commence recommendation), a user’s
behavior might change quickly a few seconds ago, which has
a significant impact on sequence recommendations, but our
service is much more stable, so we use T+1 instead of online
learning.

In practice, we first conduct model inference to generate
tag node embeddings in the offline system shown in Section
IV-B, after the training is finished. And then the embeddings
are directly uploaded to online model servers, instead of online
real-time GNN layers for inference. This strategy can greatly
relieve the pressure of online service without loss of accuracy,
since no real-time graph construction is required in the case.
On the other hand, the parameters of sequence-based layers,
shown in Section IV-C, are uploaded to online model servers
for real-time sequence predictions. To solve the cold start
issue, we recommend the most frequently clicked tags when
a user opens the interface. But if a user proposes a question
without any click behaviors, we will directly find out the best



TABLE II: Statistics of our dataset.

Tag Mining Tag Recommendation
Sentence Label Data Type Relation Session Information

training data: 49,093
test data: 5,167

KB doc: ∼2 million

T: 38,344
Q: 656,720

E: 446

asc: 194,116
clk: 25,390
cst: 137,784
crl: 656,720

sessions: 98,875
tag clicks: 286,802
average clicks: 2.9

matching RQ and recommend tags according to asc (T-Q)
relation.

VI. EXPERIMENTS

To evaluate the effectiveness and efficiency of our IntelliTag
system, we conduct a series of experiments on tag mining and
recommendation tasks.

A. Experimental Setup

In this section, we introduce the details of our experimental
settings.

1) Dataset Description: We collect the data from our
intelligent cloud customer service system, where Table II
illustrates the statistics information about our experimental
dataset. For the tag mining task, we manually annotate ap-
proximately 54,260 RQ sentences with tag segmentation and
word weighting information (a word weight is labeled as 1
if believed to be a part of a tag), where 49,093 and 5,167
sentences are respectively applied for training and test. Until
now, our KB document already has more than 2 million Q&A
pairs and the amount still keeps growing. That is why we need
to use knowledge distillation to condensate model parameters
for performing daily inference.

For offline evaluation of TagRec task, we randomly select
98,875 sessions consisting of 286,802 tag clicks. The average
click number in sessions is 2.9, which indicates user’s ques-
tions are addressed within 3 clicks on average. In order to
reduce model pressure and filter noisy data, we only keep 30
days of active RQs retrieved by online user’s questions from
2020/02/13 to 2020/03/13. Finally, 38,344 tags are mined from
656,720 RQs where there are 1,014,010 relations with 4 types.
The whole data is split into training, validation and test dataset
at the proportion of 80%, 10% and 10%, respectively.

2) Evaluation Metrics: Since our goal is to excavate as
many and accurate tags as possible, we deliberately choose F1
score as our evaluation metric for tag mining task. Following
[73], we use MRR (Mean Reciprocal Rank), NDCG@K (Nor-
malized Discounted Cumulative Gain at rank K) and HR@K
(Hit Ratio at rank K) to offline evaluate the model effectiveness
of TagRec task. In our experiments, we set K ∈ {1, 5, 10}
for HR and NDCG. Following the common strategy [46], we
randomly choose 49 tags from the same tenant as negative
samples, and rank the list consisting of the above 50 tags.
For all these metrics, the higher the value, the better the
performance.

3) Model Settings: For the multi-task learning model, we
use a 12-layer Transformer with 768 hidden units for BERT.
We set the maximum sentence length as 512. The same weight

TABLE III: Performance comparison on tag mining task (r:
rule; d: knowledge distillation).

Training Mode Precision Recall F1 Score Inference Time
ST model 76.46% 79.07% 77.74% -
MT model 79.10% 81.82% 80.44% 570 mins
MT model + r 81.59% 80.16% 80.87% 574 mins
MT model + d + r 80.77% 79.25% 80.00% 40 mins

is leveraged to add tag segmentation loss and word weighting
loss. To distill knowledge, we use a 2-layer Transformer to
construct a student BERT, and such a compact student BERT
will be adopted for inference purposes. While for TagRec
task, we generate 100-dimensional vectors as tag features,
by learning semantic information from a text perspective.
The number of multi-head is set as 4 for neighbor attention,
metapath attention and contextual attention. The size of the
input layer of the sequential model is 100, and we just use a
2-layer Transformer for the sake of model efficiency.

4) Baselines: For the task of tag mining, we simply show
the improvement of our multi-task model versus single-task
separated learning fashion, as well as knowledge distillation.
We next compare our proposed model with recently state-
of-art methods on TagRec task, where the same parameter
setting is configured with our model for a fair comparison.
To demonstrate the effectiveness of our end-to-end mode, we
also prepare a variant of our IntelliTag (i.e., IntelliTagst). The
baselines are given below:
• GRU4Rec [39]: It applies GRU to model sequence for

recommendation with ranking-based loss;
• SR-GNN [85]: It is a graph-based recommendation

model, which constructs a homogeneous graph in order of
user’s clicks and use GNN to learn item representations;

• metapath2vec [15]: It is a state-of-the-art unsupervised
node representation learning method, fully exploiting
metapath information of heterogeneous graph;

• BERT4Rec [73]: It employs BERT to model sequence,
which reports the best results on many public sequential
recommendation dataset;

• IntelliTagst: It is a static variant that trains graph-based
layers and Transformer layers separately.

All the methods run on a single NVIDIA Tesla P100 GPU with
a batch size of 128, and we train each model using Adam
[44] with learning rate of 0.001, weight decay of 0.01, and
linear decay of the learning rate. Following [73], we set mask
proportion as 0.2 for Bert4Rec and our models.

B. The Benefits to Our Multi-task Learning Model on Tag
Mining Task

As illustrated in Table III, compared with the single-task
learning model (i.e., ST model), our designed multi-task
learning model (i.e., MT model) performs much better both
on precision and recall metrics. We believe this improvement
is conducive to the text semantic relevance of two tasks. After
we add rules (i.e., MT model + r), precision value obviously
increases and recall has a certain decrease, since we further



TABLE IV: Offline evaluation results on TagRec task.

Model MRR NDCG HR
1 5 10 5 10

GRU4Rec 0.204 0.087 0.192 0.235 0.292 0.427
SR-GNN 0.246 0.111 0.228 0.299 0.348 0.570

metapath2vec 0.299 0.177 0.300 0.340 0.415 0.539
BERT4Rec 0.349 0.201 0.364 0.412 0.517 0.663
IntelliTagst 0.395 0.239 0.413 0.464 0.574 0.730
IntelliTag 0.404 0.247 0.424 0.475 0.589 0.745

filter the result that model yields. Nevertheless, rules still
gain a performance improvement of 0.43% on final F1 score.
However, the original MT model spends too much time for
inference. We then leverage knowledge distillation (i.e., MT
model + d + r), which is 14 times faster than the original
fashion. Although F1 score decreases 0.87%, it is still much
better than ST model. By the way, all the reported results are
based on the pretrained BERT-Base model12 [76].

C. Offline Evaluation Results on TagRec Task

As shown in Table IV, for two sequential recommendation
algorithms, BERT4Rec significantly outperforms GRU4Rec,
consistent with the conclusion in [73]. SR-GNN, as a graph-
based method, is able to learn structural information of the
graph. But it can not handle multifarious node types and con-
nected relations, that is why it is not as good as metapath2vec.
As a comparison, metapath2vec achieves relatively promising
performance, due to its certain capability to incorporate het-
erogeneous information. However, as an unsupervised learning
method, it fails to impose label information and attention
mechanism. BERT4Rec is the strongest competitor due to its
effectively sequential modeling capacity.

Overall, our IntelliTagst improves BERT4Rec by 4.6% on
MRR, probably because our graph-based layers can take full
use of various types and relations information with neighbor
attention and metapath attention. It is interesting that the larger
K is, the much better IntelliTagst outperforms BERT4Rec both
on NDCG and HR. We think it might because our model is
able to aggregate information from different tenants, which
helps to learn better representations of low-frequency tags.
Finally, compared with our variant, IntelliTag further boosts
the performance by approximate 1% on MRR and NDCG,
and 1.5% on HR. It proves end-to-end training mode is better
than step-by-step on our task, since the former can disseminate
information across graph-based and sequence-based layers if
sufficient data is provided.

D. Case Study of Multiple Attention on TagRec Task

One of our contributions is to employ a multi-attention
mechanism for learning useful information from graph struc-
ture and sequential model. As illustrated in Table V, we
respectively remove neighbor attention, metapath attention and
contextual attention to obtain three variants. Not surprisingly,
the complete IntelliTag consistently achieves the best per-
formance on all metrics. More importantly, the influence of

12https://github.com/google-research/bert

TABLE V: The influence of each attention (na: neighbor
attention; ma: metapath attention; ca: contextual attention).

Model MRR NDCG HR
1 5 10 5 10

IntelliTagw/o na 0.382 0.223 0.401 0.453 0.567 0.726
IntelliTagw/o ma 0.379 0.220 0.398 0.451 0.564 0.728
IntelliTagw/o ca 0.272 0.123 0.261 0.337 0.399 0.635

IntelliTag 0.404 0.247 0.424 0.475 0.589 0.745

contextual attention is more considerable than the others, since
the performance of IntelliTagw/o ca deteriorates more rapidly.

(a) Neighbor attention of metapath TT (b) Metapath attention

(c) Contextual attention at layer1,
header2

(d) Contextual attention at layer1,
header3

Fig. 5: Heat maps of attention weights by means of different
types of attentions.

To visualize how multiple attention mechanism works, we
present a series of case study experiments. Fig. 5 (a) shows
mutual influence between two tags connected with the meta-
path TT . It is easy to find “open”, “activate” and “ETC”
attain maximum values, since they are often clicked followed
by the tag “Bluetooth”. Fig. 5 (b) shows the preference
towards multiple metapaths for different tags. The influence
of metapathTT is the strongest for “Bluetooth”, because users
are used to clicking other tags, such as “activate”, “open” and
etc. While “quota” is very related to specific scenarios, so it
is easy to be connected with the other tags (e.g., credit card or
debit card) in the same tenant (i.e., a bank) through metapath
TQEQT. Fig. 5 (c)(d) present the attention values learned by
contextual attention. We have two insights from the results: a
user’s click is most influenced by the last click; contextual
attention is capable of capturing bidirectional information
implied in a sequence.



25 50 100 200
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

MRR HR@5 NDCG@5

(a) The effectiveness versus the di-
mension size of the learned tag node
embeddings

1 2 4 8 16
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

MRR HR@5 NDCG@5

(b) The effectiveness versus the num-
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Fig. 6: The effectiveness versus the dimension size of the
learned tag node embeddings and the numbers of attention
heads.

E. Hyperparameter Sensitivity

We further perform a hyperparameter sensitivity analysis
on our TagRec task. The dimension size of the learned
embeddings is an important parameter, which influences the
amount of heterogeneous information extraction from GNN
layers. As illustrated in Fig. 6 (a), 100 is the best dimension
over different evaluation metrics, since the information of the
heterogeneous graph is not well exploited when the dimension
is too small, while the results probably overfit when it is
too large. In addition, we vary the numbers of our three
attention heads13, i.e., neighbor attention, metapath attention
and contextual attention, to examine its influence. As shown
in Fig. 6 (b), compared to the parameter of dimension size,
the number of attention heads is not sensitive under different
evaluation metrics.
F. Online Performance
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Fig. 7: Online CTR performance of our IntelliTag versus
BERT4Rec and metapath2vec.

To further evaluate our IntelliTag, we conduct a series
of experiments for online service. Based on the method of
A/B testing [93], we divide two extra traffic buckets to test
two competitive baseline algorithms (i.e., metapath2vec and
Bert4Rec). CTR (Click-Through Rate), as a key indicator of
online performance, is under monitored from 2020/3/19 to
2020/3/28. As shown in Fig. 7, our IntelliTag keeps the best
performance consistent with offline evaluation. It is worth

13The values of head numbers for different attentions are set same.

TABLE VI: Online HIR and response latency comparison.

Evaluation Metric metapath2vec BERT4Rec IntelliTag
HIR 0.218 0.214 0.212

Response latency 50.8 ms 106.2 ms 109.8 ms

noting that BERT4Rec online performance is worse than
metapath2vec conversely. Based on our analysis, metapath2vec
performs better when a tenant has few Q&A pairs, due to
its superiority of aggregating information from other tenants.
For online evaluation, we pay attention to SMEs with little
operation capacity (with few Q&A pairs), so the macro average
is applied to the CTR metric. That is, BERT4Rec’s results
variance of different tenants is very large, which leads to worse
results.

The goal of intelligent customer service is to solve user’s
questions through artificial intelligence, at least as soon as
possible to ease the pressure of manual customer service.
Therefore, we also monitor the indicator HIR (Human In-
tervention Rate) in a period. As illustrated in Table VI, the
HIR of IntelliTag is the smallest, which demonstrates our
system can solve most of the user’s questions. Since we
have already supported millions of users, a tiny change of
HIR is remarkable in our scenario, leading to a significant
reduction of SMEs’ labor costs. The other important indicator
is response latency, which is related to user experience. In
practice, 3.6 ms superiority of BERT4Rec compared with
our IntelliTag is hard to be perceived by users. Obviously,
metapath2vec is much faster for its online service, since it only
depends on the last clicked tag. In fact, we directly upload
the closest tags of each tag from the offline calculation in
advance. So there is no need to online measure relatedness
between two tags because metapath2vec does not originally
support sequential modeling. Nevertheless, approximately 100
ms is totally acceptable for our IntelliTag from the user’s
perspective.

VII. CONCLUSION AND FUTURE WORK

We have already introduced our IntelliTag system, including
data construction, model design, system implementation and
experiment evaluation, which is capable to widely inspire
real-world customer service developers. Also, our proposed
hierarchical end-to-end model combining with inner graph-
based and outer sequence-based layers can be applied in more
tasks. In the future, we will try more Q&A pairs collection
ways for tag mining and cache high-frequency data to decrease
system latency, aiming to provide better cloud service and
faster response. Further, we will also introduce our proposed
technical solutions into IVR (Interactive Voice Response)
services to replace manually preset voice prompt phrase.
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APPENDIX
THE TECHNICAL DETAILS OF THE MODEL

In this section, we reveal the formal derivation of our
TagRec model.

A. Structural Information Excavation from TagRec Heteroge-
neous Graph

1) Aggregating Node Information with Neighbor Attention:
Given a metapath ρ, we collect neighbors for target tag t,



which can be denoted as N ρ
t . Formally, for each neighbor

t′ ∈ N ρ
t , we calculate its importance to tag t as follows:

αρtt′ = LeakyReLU(WT
n [xt||xt′ ]) (4)

where Wn ∈ R2d×1 is the weight matrix for neighbor
attention, and [xt||xt′ ] indicates vector concatenation of xt
and xt′ , which are respectively feature vectors of node t
and node t′. αρtt′ indicates attention value of target node
t with neighbor node t′ transmitted by metapath ρ, where
LeakyReLU activation function [59] is applied. Motived by
[77], [80], we aggregate neighbors with respect to metapath ρ
by weighted sum, and adopt a multi-head attention to reduce
the high variance:

hρt = ‖Mm=1σ(
∑
t′∈Nρt

softmax(αρtt′)xt′) (5)

where the term
∑
t′∈Nρt

softmax(αρtt′)xt′ is the node feature
average weighted by neighbor attention, where softmax layer
is used to normalize αρtt′ . M denotes the number of attention
heads, and ‖Mm=1(·) indicates the vector concatenation of each
multi-head. σ(·) is sigmoid activation function, and hρt ∈
RMd×1 represents target embedding of node t aggregated with
neighbor attention via metapath ρ.

2) Learning Tag Embedding with Metapath Attention:
Given a target tag t, we can obtain a set of representations
{hρt }ρ∈P . Concretely, we calculate the attention weight βρt of
metapath ρ for tag t as follows:

βρt = vTp tanh(Wph
ρ
t + bp) (6)

where {vp ∈ RMd×1,Wp ∈ RMd×Md,bp ∈ RMd×1} is
the parameter set, and we adopt tanh as activation function.
Similarly, a softmax is applied for normalization and we
employ weighted sum for multiple metapath fusion with
dimensionality reduction, as follows:

zt = Wl

(∑
ρ∈P

softmax(βρt )h
ρ
t

)
+ bl (7)

where Wl ∈ Rd×Md and bl ∈ Rd×1 represents the weight
matrix and the bias term for linear transformation, respectively.
And zt denotes tag embedding of target node t aggregated by
multiple metapath attention.

B. Sequential Modeling with Transformer Layers

As illustrated in Fig. 8, our sequential model consists
of three main layers: an input layer, a Transformers layer
(including attention and feed-forward part) and an output
layer. In particular, multiple Transformer layers are stacked
for comprehensively capturing sequential information.

For the input layer, we add each tag embedding with
corresponding position embedding and concatenate them to-
gether [77]. The input consists of N clicked tag embeddings
(i.e., z1 ∼ zN ) and our prediction goal (i.e., zmask), which is
marked as “mask” in the input layer.

X(1) = [z1+p1; z2+p2; . . . ; zN +pN ; zmask+pN+1] (8)

Fig. 8: The illustration of sequential model.

where we use X(1) to denote the output of this layer, which
will be fed into the first Transformer layer. Specifically, each
Transformer layer is comprised of an attention part and a feed-
forward part. Formally, given the input of lth Transformer
layer, the attention part can be described as:

A(l) = Norm(X(l) +Dropout(MultiHead(X(l)))) (9)

We purposely omit the detail of MultiHead self-attention,
Dropout and Norm operators as we continue to use the same
calculation in [77]. Next, we calculate feed-forward part in
terms of the output of attention part as follows:

X(l+1) = Norm(A(l) +Dropout(FNN(A(l)))) (10)

where X(l+1) is the output of the lth Transformer layer and
also the input of l + 1th layer, since multiple Transformers
are stacked to take full advantage of sequential information.
Similarly, the details of FNN operator is also omitted as for
same implementation in [77]. We stack L Transformers and
finally use a projection layer as the output layer to yield
predicted tags probabilities:

ŷ = Projection(X(L+1)[: N + 1])

= softmax(WtX
(L+1)[: N + 1] + bt)

(11)

where ŷ is the predicted tags probability distribution at N +1
time. X(L+1)[: N + 1] is the last row of X(L+1), which
represents the output of the mask embedding in the L + 1th

layer. And Wt ∈ R|T |×d and bt ∈ R|T |×1 are respectively
projection weight matrix and bias term, where |T | is the
number of tags. Finally, we impose cross entropy predicted
probabilities and ground truth to calculate the loss:

L(ŷ) = −
|T |∑
i=1

yilog(ŷi) + (1− yi)log(1− ŷi) (12)

where L(ŷ) is the loss function, y denotes the one-hot
encoding vector of the ground truth tags, and ŷi indicates the
predicted probability of i-th tag.


