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Abstract
Recently, representation learning on temporal
graphs has drawn increasing attention, which
aims at learning temporal patterns to character-
ize the evolving nature of dynamic graphs in real-
world applications. Despite effectiveness, these
methods commonly ignore the individual- and
combinatorial-level patterns derived from different
types of interactions (e.g., user-item), which are at
the heart of the representation learning on tempo-
ral graphs. To fill this gap, we propose MERIT,
a novel multi-level graph attention network for in-
ductive representation learning on temporal graphs.
We adaptively embed the original timestamps to
a higher, continuous dimensional space for learn-
ing individual-level periodicity through Personal-
ized Time Encoding (PTE) module. Furthermore,
we equip MERIT with Continuous time and Con-
text aware Attention (Coco-Attention) mechanism
which chronologically locates most relevant neigh-
bors by jointly capturing multi-level context on
temporal graphs. Finally, MERIT performs mul-
tiple aggregations and propagations to explore and
exploit high-order structural information for down-
stream tasks. Extensive experiments on four public
datasets demonstrate the effectiveness of MERIT
on both (inductive/transductive) link prediction and
node classification task.

1 Introduction
Graph representation learning, which is devoted to embed-
ding graph into low dimensional space, has drawn increas-
ing attention in recent years. Following this line, several ef-
forts have been made for graph structural feature extraction
and attained considerable success, most notably proximity-
preserving methods [Grover and Leskovec, 2016; Wang et al.,
2016; Zhang et al., 2018] and recently emerging graph neu-
ral network (GNN) based methods [Kipf and Welling, 2017;
Velickovic et al., 2018; Hamilton et al., 2017]. Despite excel-
lent performance, these methods only consider static or non-
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Figure 1: A toy example of temporal graph for recommender sys-
tem. Different interactions are predicted when individual- and
combinatorial-level context is separately considered.

temporal graphs, while real-world graphs are dynamic and
continuously evolving, such as social graphs and user-item
interaction graphs derived from recommender systems. Ig-
noring such temporal information may achieve unpromising
performance for dynamic graph learning. Taking Fig. 1 as an
example, the target user clicks different items over a period of
time, indicating his/her intent or interest changes over time.
This phenomenon drives us to learn the dynamic representa-
tion for the target user to adapt for the evolution of the graph
structure.

To leverage temporal information, a series of recent re-
search has shifted increasing attention towards representa-
tion learning on temporal graphs based on temporal ran-
dom walk [Du et al., 2018; Singer et al., 2019], snap-
shots [Yu et al., 2018; Guo et al., 2019; Yang et al., 2020]
and temporal kernels over continuous time [Zuo et al., 2018;
Lu et al., 2019; Huang et al., 2020; Xu et al., 2020]. Al-
though considerable success has been attained, current stud-
ies commonly ignore the fact that different types of interac-
tions (e.g., user-item) on temporal graphs show temporal pat-
terns in multi-level, which potentially implies users’ underly-
ing preferences 1, as shown in Fig. 1. Additionally, most of
them overlook rich attributes on nodes and edges, and usu-
ally are designed for specific tasks (e.g., traffic flow forecast-
ing and financial risk analysis). We believe it is critically

1Multi-level context also arises in other general graphs, e.g., tem-
poral financial graphs and social graphs.



important to develop an inductive architecture for temporal
graph representation in a more principled way, which hinges
on jointly characterizing individual- and combinatorial-level
patterns:

• Individual level. Due to evolving nature on temporal
graphs, we are interested in patterns related to timespans
between each individual node involved, where different
time intervals may imply different correlations between
adjacent interactions. Taking Fig. 1 as an example, the
target user at t6 is willing to interact with “Dessert”
when |t4 − t3| is small (e.g., related necessities) while
“Milky tea” is preferred when |t4 − t3| and |t5 − t4| are
large (e.g., daily / weekly intents).

• Combinatorial level. Current graph attention based
methods [Velickovic et al., 2018; Xu et al., 2020] in-
dependently model each neighbor’s effect on the tar-
get node, but ignore the effect from the combinatorial
context, which aims at capturing high-level semantic
among neighbors in continuous time. Specifically, given
⟨Milky tea, t1⟩ and ⟨Hot pot, t2⟩ in Fig. 1 (Assum-
ing that |t2 − t1| < 12h, and |t3 − t2|, |t4 − t3|, |t5 −
t4| > 12h), we consider their effects towards the tar-
get node from following two aspects. If we consider
them independently, “Dessert” or “Milky tea” will be
recommended based on the consumption habit in daily
life, since the target user shows similar preferences at
t3, t4, t5. On the comparison, if we jointly consider them
as the combinatorial-level context, we could abstract that
the target user maybe in shopping mall, a high-level se-
mantic hard to be captured in the first way. Therefore,
“Barbecue” is more proper to be recommended. In sum,
such context, as high-level semantic among neighbors, is
of crucial importance for temporal graph representation
learning.

In this paper, by integrating above properties together,
we propose MERIT, a novel Multi-lEvel gRaph attentIon
neTwork for inductive representation learning on temporal
graphs. In particular, we take the inspiration from the re-
cently emerging graph neural networks, which have the po-
tential of capturing high-order structural information in an
inductive manner [Cai et al., 2018; Velickovic et al., 2018;
Hamilton et al., 2017], but have not been explored much
for temporal graphs in continuous time. Benefiting from
Mercer’s Theorem [Minh et al., 2006; Xu et al., 2019],
we propose a Personalized Time Encoding (PTE) module
for transforming the original timespans into a higher, con-
tinuous space in a personalized manner, targeting for ef-
fectively preserving individual-level periodicity on temporal
graphs. Subsequently, a novel Continuous time and context
aware Attention (Coco-Attention) mechanism is developed to
chronologically emphasize core local structure by jointly con-
sidering individual- and combinatorial-level context. At last,
MERIT performs multiple aggregations and propagations to
comprehensively explore high-order structural information in
continuous time, followed by the end-to-end training for var-
ious downstream tasks. In sum, we make the following con-
tributions:
• We highlight the crucial importance of explicitly exploring

individual- and combinatorial-level patterns for representa-
tion learning on temporal graphs, and make the first step to
characterize these properties together with an unified model
in a principled way.

• We propose a novel model MERIT that is equipped with
PTE module for depicting individual-level periodicity in
a personalized manner and Coco-Attention mechanism
where multi-level context is jointly captured.

• We perform extensive experiments on four public datasets
in both transductive and inductive settings. Results demon-
strate that MERIT consistently and significantly outper-
forms various state-of-the-art methods.

2 Related Work
Graph representation learning has shown its potential in
structure feature extraction and has been widely applied in
many data mining tasks [Cai et al., 2018]. Conventional
graph representation learning methods have been developed
to preserve graph topology [Grover and Leskovec, 2016;
Wang et al., 2016; Zhang et al., 2018]. With the advent of
deep learning methods, significant efforts have been devoted
to developing neural network-based representation learning
methods [Kipf and Welling, 2017; Hamilton et al., 2017;
Velickovic et al., 2018; Liu et al., 2022; Bo et al., 2022]. Un-
fortunately, they are only designed for static graphs, which
cannot capture dynamic natures on temporal graphs.

Recently, attention is increasingly shifted towards repre-
sentation learning on temporal graphs [Kazemi et al., 2020].
Early methods [Du et al., 2018; Singer et al., 2019; Nguyen
et al., 2018] attempt to learn dynamic representations with
temporal random walk and extended skip-gram model, and
subsequently achieve superior performance on transductive
tasks. Taking advantages of information propagation, a series
of spatial-temporal graph neural networks [Seo et al., 2018;
Yang et al., 2020; Guo et al., 2019] are proposed for temporal
graphs, which utilize the temporal aggregator for integrating
representations learned from each graph snapshot. As a major
weakness, these methods ignore the dynamic nature in each
graph snapshot, resulting in sub-optimal performance. In or-
der to capture the evolving patterns of graph representation
over time, a series of works are proposed to embed temporal
graph in continuous time [Kumar et al., 2019; Lu et al., 2019;
Zuo et al., 2018; Xu et al., 2020; Huang et al., 2020;
Wang et al., 2021].

Nevertheless, all the above-mentioned methods deal with
temporal graphs by independently modeling each dynamic
interaction, failing to explore the effectiveness of multi-level
patterns. In this paper, we jointly incorporate individual- and
combinatorial-level context into an unified graph neural net-
work framework for powerful inductive representation learn-
ing on temporal graphs.

3 The Proposed Method
In this section, we propose MERIT, a Multi-lEvel gRaph
attentIon neTwork for representation learning on temporal
graphs. The overall architecture of the proposed MERIT is
shown in Fig. 2. Let’s begin with some notations and defini-
tions.
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Figure 2: Overview of the proposed MERIT model. (a) Mapping
timestamp to the continuous differentiable vector space in a person-
alized way with PTE module. (b) Aggregating important and rele-
vant neighbors by jointly considering multi-level context with Coco
Attention module . (c) Loss calculation and end-to-end optimization
for the specific downstream task.

3.1 Notations and Definitions
Our study focuses on temporal graphs, which can be defined
as follows,

Definition 1. Temporal Graph. A temporal graph G =
{V, E , T } is a form of graph with timestamps, where V and E
are sets of nodes and edges, and T is the sequence of times-
tamps. Each edge (u, v) ∈ E is associated with a timestamp
t ∈ T , referring to an interaction involving node u and node
v at time t.

Now, we formally define the problem studied in this paper
as follows,

Definition 2. Temporal Graph Representation Learning.
Given a temporal graph G = {V, E , T }, we aim to learn a
mapping function f : V × T → Rd, where d is the number
of embedding dimensions and d ≪ |V|. The mapping func-
tion f is expected to produce representation for each target
node v ∈ V at target timestamp t ∈ T with corresponding
sub-graph before timestamp t.

3.2 Personalized Time Encoding
Time encoding is at the heart of the representation learning
on temporal graphs, which refers to capturing dynamic na-
ture over a period of time. Most importantly, we should no-
tice that temporal modeling is highly time-sensitive and each
node plays a different role and shows different pattern to-
wards neighbors. Hence, we introduce a Personalized Time
Encoding (PTE) module that can adaptively learn individual-
level periodicity for each target node.

Formally, the goal of time encoding is to find a mapping
Φ : T → Rd from time domain T to d-dimensional vector
space. Considering arbitrary timestamp t ∈ T , suggested by
Mercer’s Theorem [Minh et al., 2006; Xu et al., 2019], we
define the mapping as follows:

t 7→ Φ(t) := [
√
c1ϕ1(t),

√
c2ϕ2(t), ...], (1)

where {ci}∞i=1 and {ϕi(·)}∞i=1 is an associated set of non-
negative eigenvalues and a sequence of eigenfunctions, re-
spectively [Minh et al., 2006]. Intuitively, temporal patterns

can be detected from a finite set of periodic kernels. Follow-
ing the proposition introduced in [Xu et al., 2019], we further
formulate the mapping function Φ with frequency parameter
ω as below:

t 7→ Φω(t) := [
√
c1, ...,

√
c2jcos(

jπt

ω
),
√
c2j+1sin(

jπt

ω
), ...].

(2)
Fortunately, such a Fourier series-like form has nice trunca-
tion properties, which drive us to truncate above mapping
function Φω(t) as Φω,d(t) . Subsequently, by concatenat-
ing multiple truncated periodic mapping functions, parame-
terized by the frequency set {ω1, ..., ωk}, we encode the func-
tional time as:

t 7→ Φd(t) := [Φω1,d(t)||...||Φωk,d(t)]
T . (3)

It is worthwhile to note that the Fourier coefficients in Eq. 2
(i.e., ci, i = 1, 2, ...) are not personalized. That is, the above
time encoding is irrelevant to the corresponding node repre-
sentations on temporal graphs. Specifically, Eq. 3 tends to ob-
tain the same time encoding for two different nodes with same
timestamps. Such a paradigm for time encoding is improper
to be directly incorporated into following attention mecha-
nism. Therefore, giving a target node u, we further formulate
our personalized periodic kernel for u as follows,

u, t 7→ Φω(u, t) :=[
√
c1(u), ...,

√
c2j(u)cos(

jπt

ω
),√

c2j+1(u)sin(
jπt

ω
), ...].

(4)

Here, ci(u) : Rd → R, i = 1, 2, , ... are personalized map-
ping functions for Fourier coefficients w.r.t. node u. Empiri-
cally, we implement ci(·) as a multi-layer perceptron (MLP)
due to its strong ability in modeling complex interaction.
Moreover, we enforce the outputs of MLPs to be non-negative
(i.e., Softplus activation function is adopted in the output
layer.), in order to satisfy the intrinsic properties of the Mer-
cer’s Theorem. The input of the mapping function is the rep-
resentation of node u, denoted as hu. In sum, we redefine the
time encoding via our proposed PTE module as:

u, t 7→ Φd(u, t) := [Φω1,d(u, t)||...||Φωk,d(u, t)]
T . (5)

3.3 Continuous Time and Context aware Attention
Mechanism

With the help of the PTE module, we encode the timestamps
into a continuous, higher dimensional space for preserving
the temporal patterns for each node in a personalized manner.
Next, we introduce the Continuous time and Context aware
Attention (Coco-Attention) mechanism that can chronologi-
cally tell the difference of local neighbors by jointly capturing
multi-level context on temporal graphs.
Continuous time aware. Now, we start with the continu-
ous time aware attention for effectively capturing local struc-
ture while preserving individual-level dynamic in temporal
graphs, as well as the overall pipeline of Coco-Attention cal-
culation for MERIT. We build upon the architecture of the
recently emerging graph attention mechanism [Velickovic et
al., 2018] to weigh various underlying preferences for inter-
actions between connected nodes. Specifically, given a target



node u at time t, we aim to produce the attention distribution
of u towards its neighbors Nu(t) = {v|tv<t}, followed by
a weighted combination for the final representations. Due to
the translation-invariant property for the temporal kernel, we
can alternatively use {t−tv}v∈Nu(t) as interaction times. For-
mally, we first calculate the Coco-Attention weight involving
target node u and one of its neighbor v ∈ Nu(t) at time t as
follows:

αu,v(t) =
Qu(t)K

T
v (t)√

d
,

Qu(t) = [h(l−1)
u (t) || 0 || Φd(0)] ·WQ,

Kv(t) = [F (l−1)(v, t, tv) || eu,v(t) || Φd(t− tv)] ·WK ,
(6)

where “||” denotes the concatenation operation, d is the di-
mension of the node representation, 0 is the all-zero vector,
WQ and WK is the projection matrice to obtain the “query”
and “key” matrix, respectively [Vaswani et al., 2017], and
eu,v(t) is the feature vector for the edge connecting u and v

at time t. F (l−1)(v, t, tv) is the context modeling part, which
will be introduced in next subsection. Obviously, we can eas-
ily extend it to multi-head attention for the stable training pro-
cess. Due to page limitation, we omit it here.

Next, we produce the continuous time aware representation
for target node u at time t through l-th layer in MERIT 2 as
follows,

h(l)
u (t) =

∑
v∈Nu

softmaxv(αu,v(t))Vv(t),

Vv(t) = [h(l−1)
v (t) || eu,v(t) || Φd(t− tv)] ·WV ,

(7)

where WV is the projection matrix to generate the “value”
matrix [Vaswani et al., 2017].
Context aware. As mentioned above, current Coco-
Attention mechanism is sufficient to capture individual-
level patterns in temporal graphs by incorporating multi-
scale (small / large) time interval into attention calcula-
tion in continuous space. As another major component
of Coco-Attention mechanism, we further introduce the
combinatorial-level context modeling, i.e., F (l−1)(v, t, tv).
Formally, with the contextual neighbors Su,v(tv) = {v′ ∈
Nu(t)|tv′ ≤ tv} for neighbor node v at time tv , we imple-
ment F(·) using two types of aggregators:
• Recursive aggregator applies complex LSTM architecture

on the sequential context to endow MERIT layer with ex-
cellent expressive capability.

FR = LSTM(h
(l−1)
v′ (t); v′ ∈ Su,v(tv)). (8)

• Convolutional aggregator applies convolution-like opera-
tor for more scalable implementation.

FC =

d−1∑
i=1

|Su,v(tv)|∑
j=0

h
(l−1)
j (t)Wj,i, (9)

where W ∈ R|Su,v(tv)|×d×d is the convolution kernel.
2MERIT follows the classical architectures of graph neural net-

works with multiple layers.
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Figure 3: Analysis of running time on Wikipedia dataset.

3.4 Model Learning
Naturally, MERIT performs multiple aggregations and prop-
agations to explore high-order structural information in a
broader and deeper way. With the initial representations
{h(0)

v (t)}v∈V for nodes set V at time t, we rewrite the fi-
nal temporal representations after L layers of MERIT as
{hf

v (t) = h
(L)
v (t)}v∈V . Following previous studies, we

could learn parameters of MERIT through various down-
stream applications with specific loss functions [Xu et al.,
2020; Lu et al., 2019], e.g., link prediction and node clas-
sification.

Complexity. To speed up the training process, we randomly
collect L-hop neighbors set for each node in mini-batch if
we aim to stack L layers in MERIT. Since the masked self-
attention operation is parallelizable [Velickovic et al., 2018],
the time complexity of each layer in MERIT with K heads
and L layers for each batch is approximately O((K · Ñ)L),
where Ñ is the number of neighbors sampled for each node.
Clearly, the time complexity of MERIT is comparable with
GAT, which is verified in the Fig. 3. In addition, Fig. 3 shows
that MERIT achieves faster convergence speed and better per-
formance. Actually, MERIT has been deployed in industrial
recommender systems to support very large-scale temporal
graphs, consisting of hundreds of millions of nodes and edges.

4 Experiments
In this section, we perform a series of experiments on four
datasets to demonstrate the effectiveness of MERIT.

4.1 Experimental Setup
Evaluation Datasets and Metrics. We conduct exten-
sive experiments on four widely used datasets [Kumar et al.,
2019] from different domains, namly Reddit, Wikipedia,
MOOC and LastFM. In particular, we calculate the Average
Repetitive Rate (ARR) of user behaviors for the four datasets
adopted in [Bai et al., 2019] to reveal the periodicity. We
summarize the statistics of the four datasets in Table 1.

In our experiments, we adopt commonly used average pre-
cision (AP) and Accuracy for the link prediction evaluation
and area under the ROC curve (AUC) for the node classifica-
tion evaluation.



Reddit Wikipedia MOOC LastFM

# Nodes 11, 000 9, 227 7, 145 2, 000
# Edges 672, 477 157, 474 411, 749 1, 293, 103

# Features 172 172 4 N.A.
ARR 0.15 0.60 0.53 0.32

Table 1: Statistics of the datasets.

Baselines We compare MERIT with ten state-of-art meth-
ods, falling into three main groups: i) deep recurrent neural
network based methods (i.e., Time-LSTM [Zhu et al., 2017]
and Jodie [Kumar et al., 2019]) learning dynamic embed-
dings from a sequence of temporal interactions, static graph
neural network based methods (i.e., GraphSAGE [Hamil-
ton et al., 2017] and GAT [Velickovic et al., 2018]) cap-
turing high-order structure with information propagation
and temporal graph representation learning methods (i.e.,
CTDNE [Nguyen et al., 2018], M2DNE [Lu et al., 2019],
GCRN [Seo et al., 2018], GraphSAGE-T, GAT-T and
TGAT [Xu et al., 2020]) well designed for temporal graphs.

For our model, we report its performance with different
context aggregators, i.e., MERITR with recursive aggregator
and MERITC with convolutional aggregator.

Significance Test For results in Tables 2 and 3, we use **
(or *) to indicate that the improvement of MERIT over the
best performance from the best baseline is significant based
on paired t-test at the significance level of 0.01 (or 0.05).

4.2 Experimental Results and Analysis
Overall Performance Comparison
From the experimental results in Table 2 and Table 3, firstly,
we observe that our proposed MERIT model consistently
outperforms all the baselines on both link prediction and
node classification tasks, demonstrating the effectiveness
of MERIT. Not surprisingly, MERITR slightly outperforms
MERITC due to excellent expressive capability of LSTM ar-
chitecture. Secondly, compared to traditional graph neural
networks, the performance gains of temporal graph represen-
tation learning methods are attributed to the functional time
encoding on temporal graphs. Particularly, we also observe
that the performance margin in Reddit is relatively small, on
account of the weak periodicity in this dataset (i.e., small
ARR in Table 1). Thirdly, graph neural network based meth-
ods achieve better performance than deep recurrent neural
network based methods in most cases, which indicates the
usefulness of high-order structural information and the rich
attributes on edges.

Ablation Study
We perform a series of ablation studies to better understand
the traits of MERIT. Noting that MERIT will use the Re-
cursive aggregator, i.e.,MERITR by default in what follows
since it performs best. Due to the page limitation, we only
present results of parameter studies and attention analysis on
Wikipedia dataset with link prediction task, and similar trends
can be observed on other datasets.
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Figure 4: Impact of the personalization and context modeling.
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Figure 5: Performance comparison (Accuracy) of different k and d
on Wikipedia dataset.

Impact of Personalization and Context Modeling. We
prepare two variants of MERIT for comparison, namely
MERIT−P (MERIT without personalization modeling in
PTE module) and MERIT−C (MERIT without context mod-
eling in Coco-Attention mechanism). Moreover, we select
the TAGT as the reference baseline and report the compari-
son results in Fig. 4. Not surprisingly, we find that the over-
all performance order is as follows: MERIT > MERIT−P ,
MERIT−C > TGAT. The results show that it is necessary to
adaptively learn proper Fourier coefficients in periodic ker-
nels for enhancing temporal representations, while related
combinatorial-level context information is also of crucial im-
portance to be captured.

Impact of the Number of Periodic Kernels. Here, we an-
alyze the impact of the number of periodic kernels (i.e., k in
Eq. 5) by varying it in the set of {1, 3, 5, 7, 9}. In Fig 5
(a), it is clear that the optimal performance is achieved with
k = 5, demonstrating a proper number of periodic kernels is
beneficial to effectively capture temporal patterns. However,
a larger k may lead to overfitting issue.

Impact of the Truncated Dimension. Similarly, we inves-
tigate into the impact of the truncated dimension d (See Eq.
3) by varying it in the set of {8, 16, 32, 64, 128, 256}. As
shown in Fig 5 (b), MERIT achieves the best performance
when d = 32 or d = 64. Overall, our model is not sensi-
tive to this parameter due to the nice truncation properties of
Fourier series-like form.

Attention Weight Analysis
We first present the macro-level analysis of the attention
distributions on three datasets (i.e., Reddit, Wikipedia and
Mooc), which aims at analyzing how the attention weights
change w.r.t. the timespans of previous interactions. Specif-
ically, for each node pair ⟨u, v, t⟩, we plot the attention
weights {αu,v′(t)|v′ ∈ Nu(t)}

⋃
{αu′,v(t)|u′ ∈ Nv(t)}



Reddit Wikipedia MOOC LastFM
Accuracy AP Accuracy AP Accuracy AP Accuracy AP

Time-LSTM 0.7025 0.7157 0.5625 0.5648 0.5601 0.5673 0.5103 0.5216
Jodie 0.9088 0.9742 0.8354 0.9293 0.7822 0.7746 0.6211 0.6505

GraphSAGE 0.9323 0.9830 0.8889 0.9599 0.7004 0.7459 0.6441 0.6922
GAT 0.9317 0.9833 0.8807 0.9539 0.6732 0.7217 0.6548 0.6800

Tr. CTDNE 0.7810 0.8594 0.5521 0.5689 0.5802 0.5919 0.3920 0.4399
M2DNE 0.8622 0.9429 0.8167 0.9091 0.6858 0.6945 0.5926 0.6201
GCRN 0.9338 0.9829 0.8855 0.9552 0.7106 0.7462 0.6541 0.7213

GraphSAGE-T 0.9303 0.9823 0.8969 0.9648 0.7566 0.7868 0.6791 0.7765
GAT-T 0.9323 0.9834 0.8984 0.9647 0.7553 0.7901 0.6785 0.7576
TGAT 0.9342 0.9837 0.8743 0.9502 0.6869 0.7157 0.6765 0.6732

MERITC 0.9348 0.9840 0.9038 0.9702 0.7907 0.8521 0.7021 0.7922
MERITR 0.9355* 0.9845* 0.9061** 0.9714** 0.7908** 0.8614** 0.7171** 0.8129**
(v.s. best) (+0.14%) (+0.08%) (+1.02%) (+0.68%) (+4.52%) (+9.02%) (+5.59%) (+4.69%)

GraphSAGE 0.9001 0.9650 0.8627 0.9442 0.6973 0.7365 - -
GAT 0.9018 0.9669 0.8543 0.9372 0.6610 0.6997 - -

GCRN 0.9002 0.9636 0.8533 0.9328 0.6942 0.7438 - -
In. GraphSAGE-T 0.8991 0.9650 0.8761 0.9566 0.7641 0.7976 - -

GAT-T 0.9031 0.9681 0.8803 0.9562 0.7677 0.8043 - -
TGAT 0.9056 0.9679 0.8536 0.9353 0.6789 0.7036 - -

MERITC 0.9064 0.9680 0.8831 0.9602 0.7944 0.8403 - -
MERITR 0.9069* 0.9682* 0.8836* 0.9605* 0.7962** 0.8442** - -
(v.s. best) (+0.14%) (+0.03%) (+0.37%) (+0.41%) (+3.71%) (+4.96%) (-) (-)

Table 2: Performance comparison on transductive (Tr.) and inductive (In.) link prediction. “-” means no feature is available on LastFM
dataset so that inductive learning is unable to be performed.

Reddit Wikipedia MOOC

Time-LSTM 0.6305 0.7773 0.6935
Jodie 0.6106 0.7629 0.6655

GraphSAGE 0.6502 0.7974 0.6742
GAT 0.6617 0.8480 0.6459

GCRN 0.6743 0.8575 0.6695
GraphSAGE-T 0.6594 0.8515 0.6779

GAT-T 0.6743 0.8508 0.6694
TGAT 0.6411 0.8606 0.6786

MERITC 0.6763 0.8694 0.6811
MERITR 0.6846** 0.8753** 0.6881**
(v.s. best) (+5.91%) (+4.08%) (+5.32%)

Table 3: Performance comparison (AUC) on node classification.

against {t− tu,v′}
⋃
{t− tu′,v}. we report the results in

Fig. 6 (a), where a smaller timespan means a more recent
interaction. It is clear that timespans and the corresponding
attention weights are negatively correlated, which means that
MERIT captures the temporal patterns of putting less atten-
tion on more distant interactions.

From micro-level view, we select a certain user from Wike-
pedia dataset and plot his/her attention weight against times-
pans of historical interactions as an illustrative example. In
Fig. 6 (b), we observe that the attention weight decreases pe-
riodically with the increase of timespans. This finding is con-
sistent with our intuition that user’s intention or interest will
periodically change over time.
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0.0

0.1

0.2

0.3

0.4

0.5 Wikipedia
Reddit
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Figure 6: The change of attention weights w.r.t. timespans.

5 Conclusion and Future Work
In this paper, we proposed the novel MERIT model, which
consists of PTE module for characterizing individual-level
periodicity in an personalized manner and Coco-Attention
mechanism for jointly capturing multi-level context. Exten-
sive experiments demonstrate the superior performance of
MERIT in both node classification and link prediction tasks.
As future work, we will keep on investigating into the func-
tional time encoding for automatically learning the parame-
ters (i.e., {ω1, ..., ωk}) of periodic kernels. Moreover, we will
also consider incorporating temporal point process to replace
current MLP component as a decoder for dynamics modeling.
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