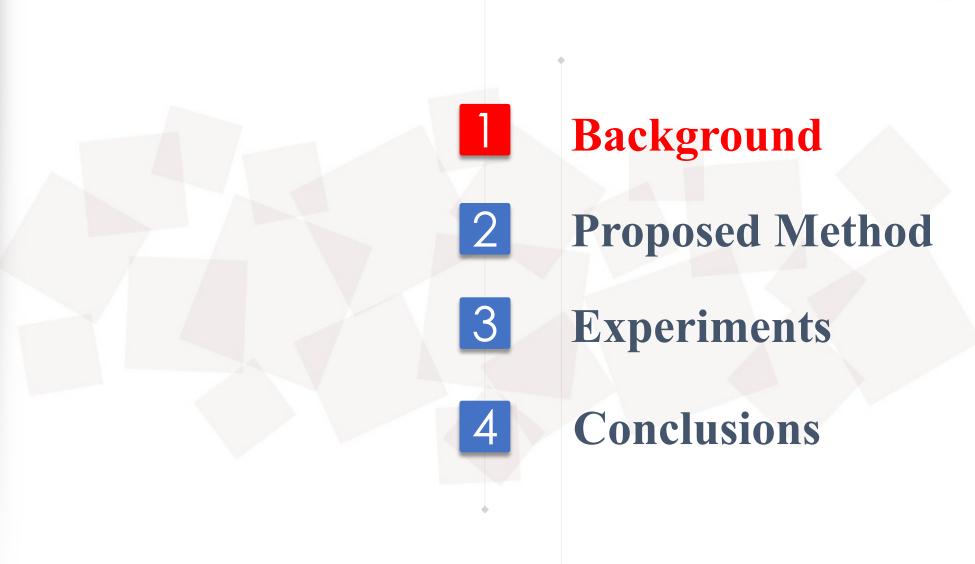


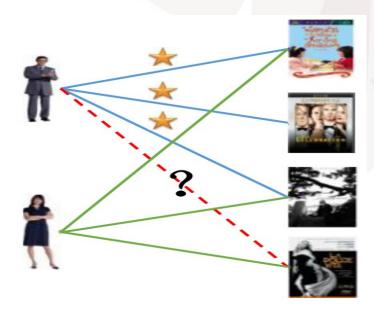
Leveraging Meta-path based Context for Top-N Recommendation with a Neural Co-attention Model

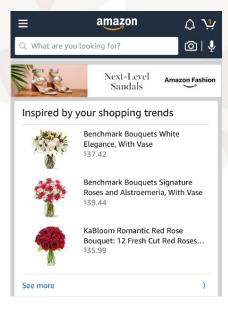
Binbin Hu¹, Chuan Shi¹, Wayne Xin Zhao², Philip S. Yu³ ¹Beijing University of Posts and Telecommunications, Beijing, China ²Renming University of China, Beijing, China ³University of Illinois at Chicago, IL, USA



Recommendation systems help users discover items of interest from a large resource collection

Recommender systems are everywhere, e.g., Amazon, Quora, Douban Recommender systems play a pivotal role in various online services





📑 Feed	Bookmarks	New Questions
Answer · Artifici	al Intelligence	
	beople are learn What should I d	ing machine lo to stand out?
Update Facebo	hek Patnia, Applied on.com d Sat - Upvoted by Jord ok and Siraj Memon, <u>MS</u> ity of Maryland, Baltimo	an Frank, <u>Datamaker at</u> Computer Science,
Machine Lea		are trying to learn ost people abandon * Writing c Read More
Upvote Do	wnvote Share	•••

全部~ 豆瓣值得推荐的奇妙用法	取消
热门搜索	
■ 火箭少女101 小组	
一步之遥·电影	
让子弹飞·电影	
4 "女神"孔连顺惨被喜剧坑·对答666	
5 我不是药神·电影	
6 达拉斯买家俱乐部·电影	
7 猎毒人 ·电视剧	

Collaborative filtering: a basic recommendation method

- Predict the interests of a user by collecting from many other users, e.g. matrix factorization
- Suffer from cold-start problem: data sparseness, new users/items

Integrate more auxiliary information

- Social network → social recommendation
- Location \rightarrow location based recommendation
- Feature information \rightarrow context based recommendation

Heterogeneous information network is a promising way to integrate auxiliary data.

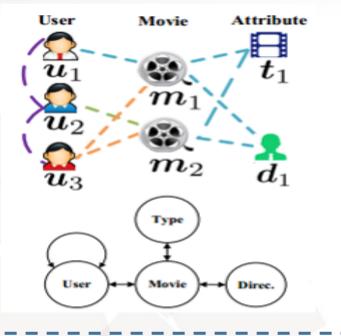
Background Heterogeneous Information Network

Heterogeneous Information Network (HIN)
Include multiple types of nodes or links
Flexible to characterize heterogeneous data

Contain rich semantics

Meta-path

- A relation sequence connecting two objects in HIN
- Extract structural features
- Embody path semantics



 $User \xrightarrow{view} Movie \xrightarrow{viewed} User (UMU)$

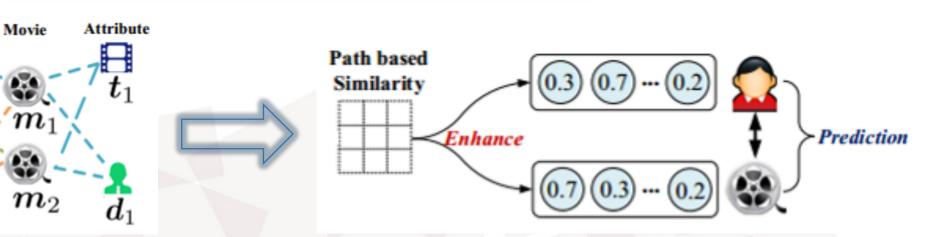
Two users view the same movies

 $User \xrightarrow{view} Movie \xrightarrow{directed} Director \xrightarrow{direct} Movie(UMDM)$

Movies having the same type with the movies that the user viewed

Background HIN based Recommendation

User



Existing HIN based methods

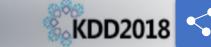
- Path based semantic relatedness as features for recommendation (e.g., OptRank, SemRec)
- Path based similarities for enhancing user/item representations (e.g., HeteRec, FMG)

Drawbacks

Representations are not tailored for recommendation

KDD2018

- Seldom explicit representation for path/meta-path
- Only capture two way user-item interactions, without considering the mutual effect between user, item and path





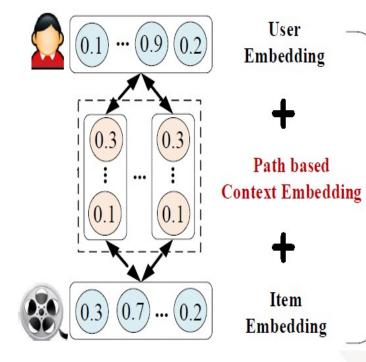
Our idea

 Learn explicit representations for meta-path based context tailored for the recommendation task
 Characterize a three-way interaction (user, meta-path, item)

2 Challenges

Key Research Problems

Prediction



Heterogeneity

Comprehensively and flexibly utilize heterogeneous information

Interpretability

Utilize context semantics for interpretable recommendation

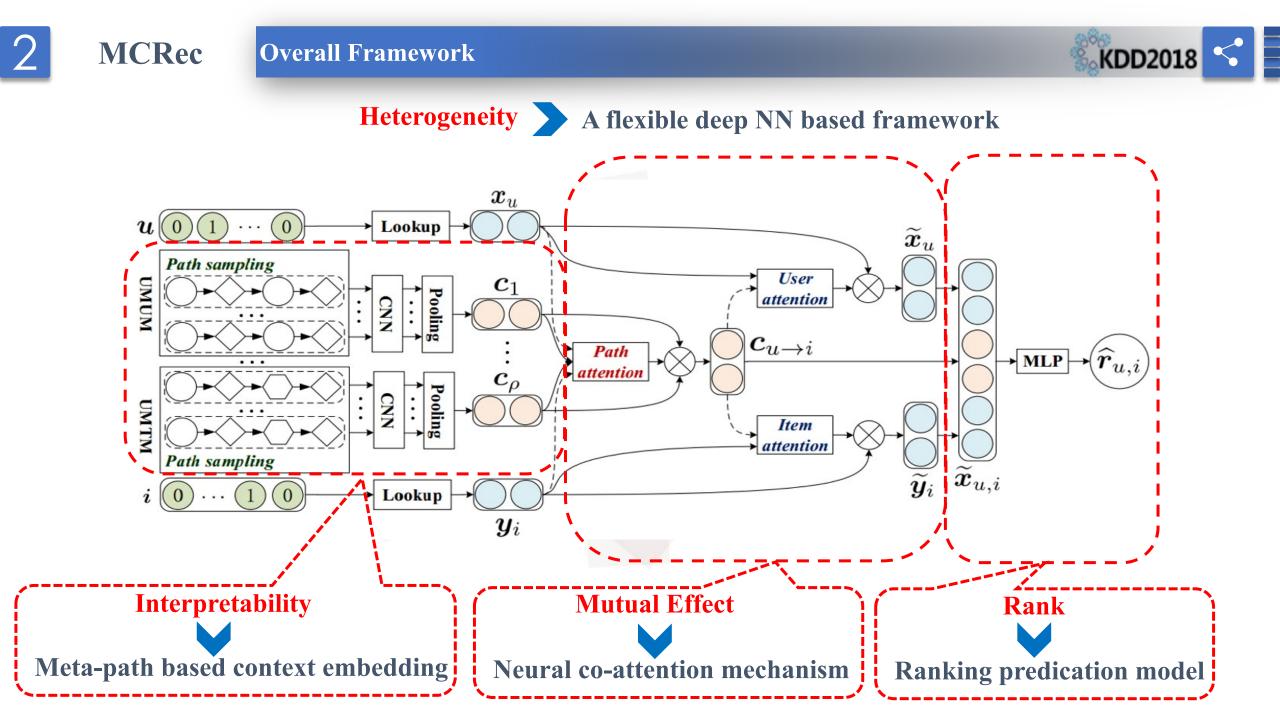
Mutual Effect

Utilize the mutual effect between user-item pair and meta-path based context

Rank

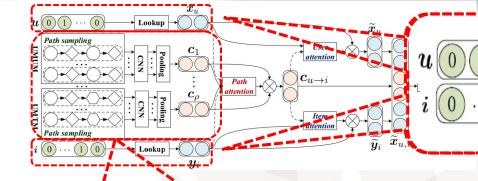
A more useful ranking model for HIN based recommendation

Meta-path based Context for RECommendation (MCRec)

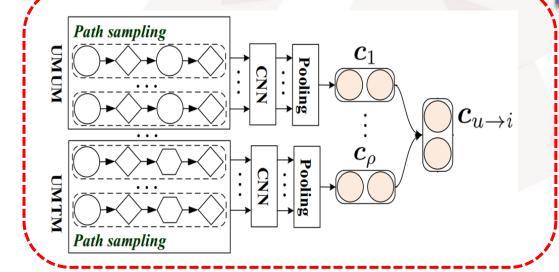


MCRec

Embedding Model for user, item and context



User/Item Embedding Look up $x_u = P^T \cdot p_u,$ $y_i = Q^T \cdot q_i.$



Meta-path based Context Embedding
Priority based Sampling Strategy
SVD/FM for pre-training
Priority based random walk based on meta paths
CNN & Pooling for Encoding Context
h_p = CNN(X^p; Θ)
c_ρ = max-pooling({h_p}^K_{p=1}).

 $\mathbf{c}_{u \to i} = \frac{1}{|\mathcal{M}_{u \to i}|} \sum_{\rho \in \mathcal{M}_{u \to i}} \mathbf{c}_{\rho},$

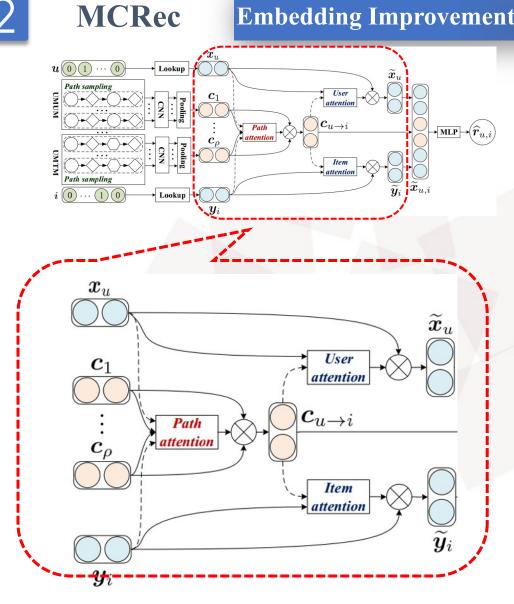
Merge

 x_u

Lookup

Lookup

Embedding Improvement Model



Neural Co-attention Model

Path Attention Part

Attention score

$$\begin{aligned}
\boldsymbol{\alpha}_{u,i,\rho}^{(1)} &= f(\mathbf{W}_{u}^{(1)}\mathbf{x}_{u} + \mathbf{W}_{i}^{(1)}\mathbf{y}_{i} + \mathbf{W}_{\rho}^{(1)}\mathbf{c}_{\rho} + \mathbf{b}^{(1)}), \\
\boldsymbol{\alpha}_{u,i,\rho}^{(2)} &= f(\mathbf{w}^{(2)^{\top}}\boldsymbol{\alpha}_{u,i,\rho}^{(1)} + b^{(2)}), \\
\text{Softmax} & \boldsymbol{\alpha}_{u,i,\rho} = \frac{\exp(\boldsymbol{\alpha}_{u,i,\rho}^{(2)})}{\sum_{\rho' \in \mathcal{M}_{u \to i}} \exp(\boldsymbol{\alpha}_{u,i,\rho'}^{(2)})}. \\
\text{Apply} & \mathbf{c}_{u \to i} = \sum_{\rho \in \mathcal{M}_{u \to i}} \boldsymbol{\alpha}_{u,i,\rho} \cdot \mathbf{c}_{\rho},
\end{aligned}$$

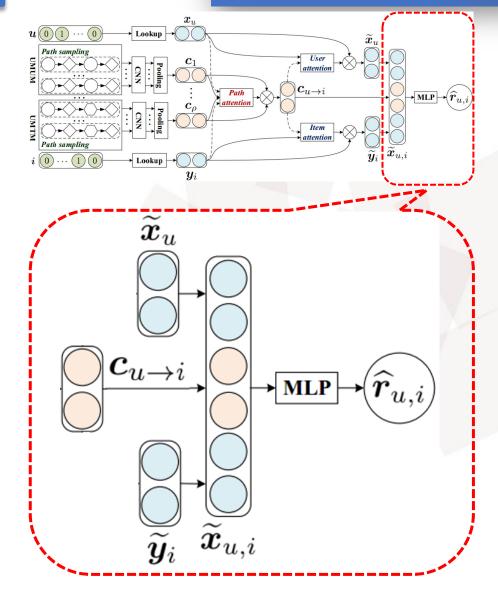
KDD2018

User and Item Attention Part

Attention score
$$\begin{aligned} \beta_u &= f(\mathbf{W}_u \mathbf{x}_u + \mathbf{W}_{u \to i} \mathbf{c}_{u \to i} + \mathbf{b}_u), \\ \beta_i &= f(\mathbf{W}'_i \mathbf{y}_i + \mathbf{W}'_{u \to i} \mathbf{c}_{u \to i} + \mathbf{b}'_i), \\ \tilde{\mathbf{x}}_u &= f(\mathbf{W}'_i \mathbf{y}_i + \mathbf{W}'_{u \to i} \mathbf{c}_{u \to i} + \mathbf{b}'_i), \\ \tilde{\mathbf{x}}_u &= f(\mathbf{W}_i \mathbf{y}_i - \mathbf{W}'_u \mathbf{y}_i), \\ \tilde{\mathbf{y}}_i &= f(\mathbf{W}_i \mathbf{y}_i - \mathbf{W}_i), \end{aligned}$$

MCRec

Ranking prediction Model



Ranking Prediction Model based on MLP

Concatenate

$$\widetilde{\mathbf{x}}_{u,i} = \widetilde{\mathbf{x}}_u \oplus \mathbf{c}_{u \to i} \oplus \widetilde{\mathbf{y}}_i,$$

Multi-layer Perceptron

 $\widetilde{\mathbf{x}}_1 = f(\mathbf{W}_0\widetilde{\mathbf{x}} + b_0)$

$$\widetilde{\mathbf{x}}_{L} = f(\mathbf{W}_{L-1}\widetilde{\mathbf{x}}_{L-1} + b_{L-1})$$
$$\widehat{r}_{u,i} = \sigma(w^{T}\widetilde{\mathbf{x}}_{L})$$

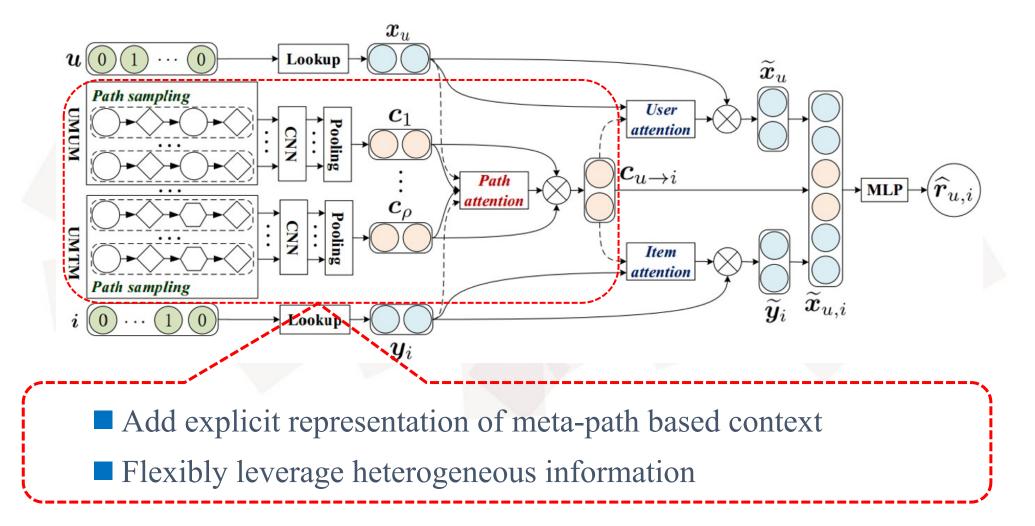
Optimization with negative sampling

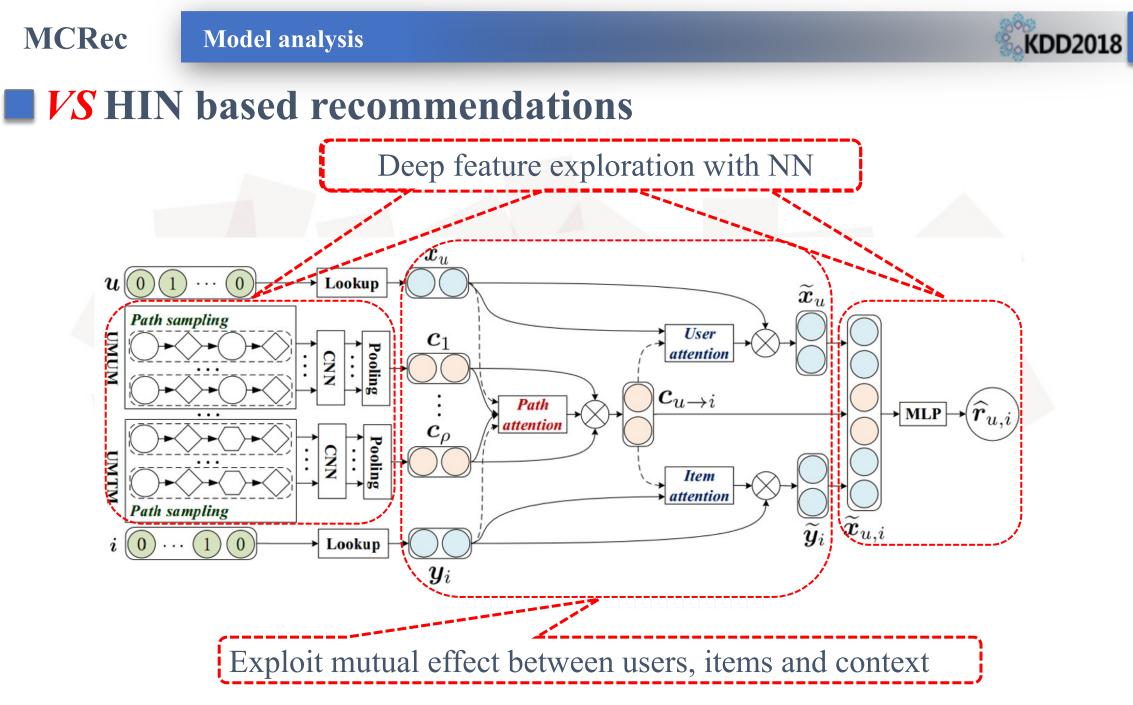
$$\ell_{u,i} = -\log \hat{r}_{u,i} - E_{j \sim P_{neg}} [\log(1 - \hat{r}_{u,j})],$$

MCRec

Model Analysis

VS traditional recommendations







Datasets

Datasets	Relations (A-B)	#A #B		#A-B	Meta-paths	
Movielens	User-Movie	943	1,682	100,000	UMUM	
	User-User	943	943	47,150	UMGM	
	Movie-Movie	1,682	1,682	82,798	UUUM	
	Movie-Genre	1,682	18	2861	UMMM	
LastFM	User-Artist	1,892	17,632	92,834	UATA	
	User-User	1,892	1,892	18,802	UAUA	
	Artist-Artist	17,632	17,632	153,399	UUUA	
	Artist-Tag	17,632	11,945	184,941	UUA	
Yelp	User-Business	16,239	14,284	198,397	UBUB	
	User-User	16,239	16,239	158,590	UBCaB	
	Business-City (Ci)	14,267	47	14,267	UUB	
	Business-Category (Ca)	14,180	511	40,009	UBCiB	

Metrics $\blacksquare \operatorname{Perc}(a)10$ Recall@10 NDCG@10

KDD2018

Baselines

- **CF based Methods**
 - ItemKNN
 - **BPR**
 - MF
 - NeuMF

HIN based Methods

- SVDFeature_{hete}
- SVDFeature_{mp}
- HeteRS
- FMG_{rank}

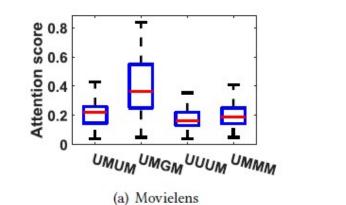
Our Methods

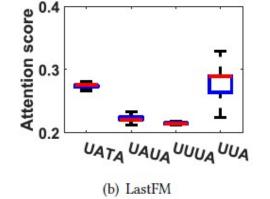
- MCRec_{avg}
- MCRec_{mp}
- MCRec

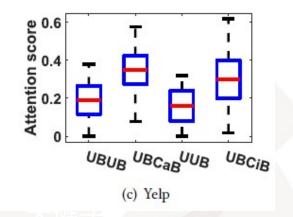
Model Prec@10	Movielens		LastFM		Yelp				
	Recall@10	NDCG@10	Prec@10	Recall@10	NDCG@10	Prec@10	Recall@10	NDCG@10	
ItemKNN	0.2578	0.1536	0.5692	0.4160	0.4513	0.7981	0.1386	0.5421	0.5378
BRP	0.3010	0.1946	0.6459	0.4129	0.4492	0.8099	0.1474	0.5504	0.5549
MF	0.3247	0.2053	0.6511	0.4364	0.4634	0.7921	0.1503	0.5350	0.5322
NeuMF	0.3293*	0.2090	0.6587	0.4540	0.4678	0.8104	0.1504	0.5857	0.5713
SVDFeature _{hete}	0.3171	0.2021	0.6445	0.4576	0.4841	0.8290*	0.1404	0.5613	0.5289
SVDFeature _{mp}	0.3109	0.1929	0.6536	0.4391	0.4651	0.8116	0.1524	0.5932	0.5974*
HeteRS	0.2485	0.1674	0.5967	0.4276	0.4489	0.8026	0.1423	0.5613	0.5600
FMG _{rank}	0.3256	0.2165*	0.6682*	0.4630*	0.4916*	0.8263	0.1538*	0.5951*	0.5861
MCRec _{rand}	0.3223	0.2104	0.6650	0.4540	0.4795	0.8002	0.1510	0.5842	0.5718
MCRec _{avg}	0.3270	0.2111	0.6631	0.4645	0.4914	0.8311	0.1595	0.5933	0.6021
MCRec _{mp}	0.3401	0.2200	0.6828	0.4662	0.4924	0.8428	0.1655	0.6303	0.6228
MCRec	0.3451#	0.2256#	0.6900 [#]	0.4807#	0.5068#	0.8526 [#]	0.1686 [#]	0.6326#	0.6301#

MCRec significantly outperforms CF, NN, and HIN based recommendations

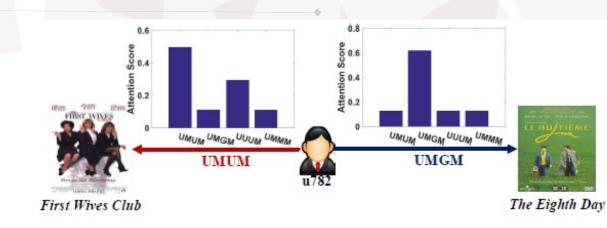
Distribution of attention weights





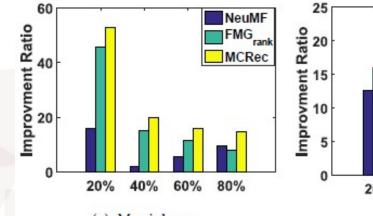


Case study on Movielens dataset

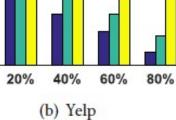


MCRec provides personalized interpretable recommendation

Cold-start recommendation



(a) Movielens

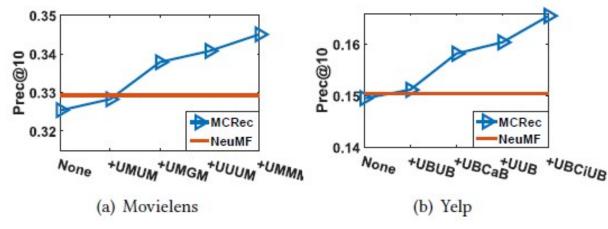


NeuMF

FMG

MCRec

Impact of different meta-paths



MCRec is promising for cold-start problem

• We designed a three-way neural interaction model by explicitly incorporating meta-path based context

KDD2018

The co-attention model mutually improved the representations for path based context, users and items

Extensive experimental results have revealed the effectiveness and interpretability of our model

Thanks Q&A

More materials in www.shichuan.org