Adversarial Learning on Heterogeneous Information Networks

Binbin Hu^{1, 2}, Yuan Fang³, Chuan Shi¹

¹Beijing University of Posts and Telecommunications

²AI Department, Ant Financial Services Group

³Singapore Management University

Background & Problem

Heterogeneous Information Network (HIN)

- Include multiple types of nodes and links
- Model heterogeneous data and contain rich semantics

HIN Embedding (HINE)

- Consist of two samplers and one loss function
- Samplers : select positive and negative examples
- Loss function : trained on these samples to optimize

Adversarial Learning (or GAN)

- Makes the model more robust to sparse or noisy data
- Provides better samples to reduce the labeling requirement
- GraphGAN, ANE, NETRA, ARGA

Limitation on GAN based Embedding

node representations

Limitation of HINE

- Randomly select existing nodes in the network as negative samples
- Heed to the latent distribution of the nodes so that lack robustness
- Require domain knowledge

HeGAN : The Proposed Model

HIN Embedding with GAN based Adversarial Learning (HeGAN)

Challenges

Solutions

How to capture the semantics of multiple types of nodes and relations?

How to generate fake samples efficiently and effectively?

Relation-aware Generator and Discriminator Relation-aware, Discriminator can tell whether a node pair is real generalized or fake w.r.t relation generator II. Generator can produce fake node pairs that mimic real pairs w.r.t relation **Generalized Generator** Sample latent nodes from a continuous **Relation-aware** distribution discriminator No softmax computation and fake samples are _____ not restricted to the existing nodes

Experiments

Datasets				
Datasets	#Nodes	#Edges	#Node types	#Labels
DBLP	37,791	170,794	4	4
Yelp	3,913	38,680	5	3
Aminer	312,776	599,951	4	6
Movielens	10,038	1,014,164	5	N.A.

Node Clustering

Methods	DBLP	Yelp	AMiner
Deepwalk	0.7398	0.3306	0.4773
LINE-1st	0.7412	0.3556	0.3518
LINE-2nd	0.7336	0.3560	0.2144
GraphGAN	0.7409	0.3413	-
ANE	0.7138	0.3145	0.4483
HERec-HNE	0.7274	0.3476	0.4635
HIN2vec	0.7204	0.3185	0.2812
Metapath2vec	<u>0.7675</u>	0.3672	0.4726
HeGAN	0.7920**	0.4037**	0.5052**

Node	Classificatio	n

П.

Methods	DBLP				Yelp		AMiner		
Methous	Micro-F1	Macro-F1	Accuracy	Micro-F1	Macro-F1	Accuracy	Micro-F1	Macro-F1	Accuracy
Deepwalk	0.9201	0.9242	0.9298	0.8262	0.7551	0.8145	0.9519	0.9460	0.9529
LINE-1st	0.9239	0.9213	0.9285	0.8229	0.7440	0.8126	0.9776	0.9713	0.9788
LINE-2nd	0.9144	0.9172	0.9236	0.7591	0.5518	0.7571	0.9469	0.9341	0.9471
GraphGAN	0.9198	0.9210	0.9286	0.8098	0.7268	0.7820	-	-	-
ANE	0.9143	0.9153	0.9189	0.8232	0.7623	0.7932	0.9256	0.9203	0.9221
HERec-HNE	0.9214	0.9228	0.9299	0.7962	0.7713	0.7912	0.9801	0.9726	0.9784
HIN2vec	0.9141	0.9115	0.9224	0.8352	0.7610	0.8200	0.9799	0.9775	0.9801
Metapath2vec	0.9288	0.9296	<u>0.9360</u>	0.7953	0.7884	0.7839	<u>0.9853</u>	0.9860	<u>0.9857</u>
HeGAN	0.9381**	0.9375**	0.9421**	0.8524**	0.8031**	0.8432**	0.9864*	0.9873 *	0.9883*

Link Prediction

	Methods	DBLP		Yelp			AMiner			
	Methous	Accuracy	AUC	F1	Accuracy	AUC	F1	Accuracy	AUC	F1
	Deepwalk	0.5441	0.5630	0.5208	0.7161	0.7825	0.7182	0.4856	0.5182	0.4618
	LINE-1st	0.6546	0.7121	0.6685	0.7226	<u>0.7971</u>	0.7099	0.5983	0.6413	0.6080
	LINE-2nd	0.6711	0.6500	0.6208	0.6335	0.6745	0.6499	0.5604	0.5114	0.4925
Logistic	GraphGAN	0.5241	0.5330	0.5108	0.7123	0.7625	0.7132	-	-	-
	ANE	0.5123	0.5430	0.5280	0.6983	0.7325	0.6838	0.5023	0.5280	0.4938
Regression	HERec-HNE	0.7123	0.7823	0.6934	0.7087	0.7623	0.6923	0.7089	0.7776	0.7156
	HIN2vec	0.7180	0.7948	0.7006	0.7219	0.7959	0.7240	0.7142	0.7874	0.7264
	Metapath2vec	0.5969	0.5920	0.5698	0.7124	0.7798	0.7106	0.7069	0.7623	0.7156
	HeGAN	0.7290**	0.8034**	0.7119**	0.7240**	0.8075**	0.7325**	0.7198**	0.7957**	0.7389**
	Deepwalk	0.5474	0.7231	0.6874	0.5654	0.8164	0.6953	0.5309	0.6064	0.6799
	LINE-1st	0.6647	0.7753	0.7363	0.6769	0.7832	0.7199	0.6113	0.6899	0.7123
	LINE-2nd	0.4728	0.4797	0.6325	0.4193	0.7347	0.5909	0.5000	0.4785	0.6666
Inner	GraphGAN	0.5532	0.6825	0.6214	0.5702	0.7725	0.6894	-	-	-
	ANE	0.5218	0.6543	0.6023	0.5432	0.7425	0.6324	0.5421	0.6123	0.6623
Product	HERec-HNE	0.5123	0.7473	0.6878	0.5323	0.6756	0.7066	0.6063	0.6912	0.6798
	HIN2vec	0.5775	0.8295	0.6714	0.6273	0.8340	0.4194	0.5348	0.6934	0.6824
	Metapath2vec	0.4775	0.6926	0.6287	0.5124	0.6324	0.6702	0.6243	0.7123	0.6953
	HeGAN	0.7649**	0.8712**	0.7837**	0.7391**	0.8298	0.7705**	0.6505**	0.7431**	0.7752**

Recommendation

Heterogeneity and Generalized Generator

GraphGAN

HeGAN

(c) Metapath2vec

Conclusions

- We are the first to employ adversarial learning for HIN embedding, in order to utilize the rich semantics on HINs
- We propose HeGAN that is not only relation-aware to capture rich semantics, but also equipped with a generalized generator

(d) HeGAN

• Extensive experimental results have revealed the effectiveness and efficiency of HeGAN

Acknowledgements

This research was supported by the National Natural Science Foun- dation of China (No. 61772082, 61702296), the National Key Research and Development Program of China (2017YFB0803304), the Beijing Municipal Natural Science Foundation (4182043) and the Singapore Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 1 grant (Approval No. 18-C220-SMU-006).

Contact

15 - GraphGAN

HeGAN

- hubinbin@bupt.edu.cn
- (bin.hbb@antfin.com)
- shichuan@bupt.edu.cn
- yfang@smu.edu.sg