
Adversarial Learning on Heterogeneous Information Networks

Binbin Hu
1,2†

, Yuan Fang
3
, Chuan Shi

1‡

1
Beijing University of Posts and Telecommunications

2
AI Department, Ant Financial Services Group

3
Singapore Management University

{hubinbin,shichuan}@bupt.edu.cn,yfang@smu.edu.sg

ABSTRACT
Network embedding, which aims to represent network data in a

low-dimensional space, has been commonly adopted for analyzing

heterogeneous information networks (HIN). Although exiting HIN

embedding methods have achieved performance improvement to

some extent, they still face a few major weaknesses. Most impor-

tantly, they usually adopt negative sampling to randomly select

nodes from the network, and they do not learn the underlying dis-

tribution for more robust embedding. Inspired by generative adver-

sarial networks (GAN), we develop a novel framework HeGAN for

HIN embedding, which trains both a discriminator and a generator

in a minimax game. Compared to existing HIN embedding methods,

our generator would learn the node distribution to generate better

negative samples. Compared to GANs on homogeneous networks,

our discriminator and generator are designed to be relation-aware in
order to capture the rich semantics on HINs. Furthermore, towards

more effective and efficient sampling, we propose a generalized
generator, which samples “latent” nodes directly from a continuous

distribution, not confined to the nodes in the original network as

existing methods are. Finally, we conduct extensive experiments on

four real-world datasets. Results show that we consistently and sig-

nificantly outperform state-of-the-art baselines across all datasets

and tasks.
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1 INTRODUCTION
Network structures are ubiquitous in real-world applications, rang-

ing from social and biological networks to transportation and

telecommunication systems. Thus, network analysis is becoming

increasingly important towards solving crucial problems such as

personalized user recommendation on social networks [41] and dis-

ease gene identification on biological networks [2]. These problems

often unfold as instances of node clustering, node classification

and link prediction on network data, which fundamentally depend

on an effective form of network representation. In recent years,

network embedding [3, 8] has emerged as a promising direction

for unsupervised learning of node representations, which aims to

project the nodes of a network into a low-dimensional space whilst

preserving the structural properties of the original network.

Heterogeneous information networks.While earlier network

embedding work [14, 23] has attained considerable success, they

can only cope with the so-called homogeneous networks, which

comprise one single type of nodes and edges. However, in real-world

scenarios, nodes naturally model different types of entity, which

interact with each other through multiple relations. Such networks

are known as Heterogeneous Information Networks (HIN) [28], as
illustrated in Fig. 1(a) for bibliographic data. Observe that the toy

HIN consists of multiple types of node (e.g., author and paper),

which are connected by various types of relation (e.g.,write/written
relation between author and paper, and publish/published relation

between paper and conference).

Due to its heterogeneity, HINs often carry immensely rich and

complex semantics. Thus, more recent research has shifted towards

HIN embedding, most notably Metapath2vec [11] and HIN2vec [12].

As shown in Fig. 1(b-1), existing HIN embedding methods funda-

mentally boil down to two samplers, which select “context” nodes

from the network as positive (e.g., author a2) and negative (the

shaded circles) examples for a given “center” node (e.g., paper p2),
respectively. (Note that each node can serve as the center or context

similar to the Skip-gram model [21].) Subsequently, a loss function

is trained on these samples to optimize node representations. Al-

though these methods have achieved some performance improve-

ment, they suffer from serious limitations. First, they commonly

utilize negative sampling to randomly select existing nodes in the

network as negative samples. As such, their negative samples are

not only arbitrary but also confined to the universe of the original
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Figure 1: Overview of our work. (a) A toy example of HIN for bibliographic data. (b) Comparison between our work and
previous works. (c) The framework of our proposed model HeGAN for adversarial learning on HINs.

network. Second, they mainly focus on capturing the rich seman-

tics on HINs without heeding to the underlying distribution of the

nodes, and thus lack robustness for real-world HINs that are often

sparse and noisy. Third, many HIN embedding methods [11, 26] rely

on appropriate meta-paths to match the desired semantics, which

typically require domain knowledge that is sometimes subjective

and often expensive to obtain.

Adversarial learning. On another line, Generative Adversarial
Networks (GAN) [13, 25] have been developed for learning robust

latent representations in various applications [10, 35, 37]. GANs

hinge on the idea of adversarial learning, where a discriminator

and generator compete with each other to not only train a better

discriminativemodel, but also learn the underlying data distribution.

The latter makes the model more robust to sparse or noisy data

[13, 24], and also provides better samples to reduce the labeling

requirement. Given these advantages, there have been a few initial

efforts on GAN-based network embedding [9, 22, 33, 38]. However,

these studies only investigate homogeneous networks and thus do

not account for the heterogeneity of nodes and edges, resulting in

unsatisfactory performance on semantic-rich HINs.

Present work and challenges. Given the above limitations in

current approaches, in this paper, we exploit the heterogeneity of

HINs in an adversarial setting in order to learn semantic-preserving

and robust node representations. However, its materialization is

non-trivial, given two major challenges not addressed in existing

GAN-based methods for homogeneous networks.

First, how to capture the semantics of multiple types of nodes

and relations? In existing methods, real (i.e., positive) and fake (i.e.,
negative) nodes are only differentiated by network structure. Thus,

it is imperative to design new forms of discriminator and generator

that can differentiate and model real and fake semantic-rich nodes

involved in various relations.

Second, how to generate fake samples efficiently and effectively?

In existing methods, generators learn a finite discrete distribution

over the nodes in a network. Thus, they often need to compute the

intractable softmax function, and ultimately resort to approxima-

tions such as negative sampling [9] or graph softmax [33]. Moreover,

they are essentially picking an existing node from the original net-

work according to the learned distribution, without the ability to

generalize to “unseen” nodes. Not surprisingly, they do not generate

the most representative fake nodes, as such nodes may not even

appear in the network. Thus, it is important to design a generator

that can efficiently produce latent fake samples.

Insights and contributions. To address the above challenges, we
propose HeGAN, a novel framework for HIN embedding with

GAN-based adversarial learning. In particular, we propose a new

form of discriminator and generator, as illustrated in Fig. 1(b-2). For

the first challenge, our discriminator and generator are designed

to be relation-aware in order to distinguish nodes connected by

different relations. That is, w.r.t. any relation, the discriminator can

tell whether a node pair is real or fake, whereas the generator can

produce fake node pairs that mimic real pairs. In particular, a node

pair is considered real only if (i) it is a positive pair based on network

topology; and (ii) the pair is formed under the correct relation. For

the second challenge, we design a generalized generator, which is

able to directly sample latent nodes from a continuous distribution,

such that (i) no softmax computation is necessary; and (ii) fake

samples are not restricted to the existing nodes.

In summary, we make the following contributions.

(1) We are the first to employ adversarial learning for HIN em-

bedding, in order to utilize the rich semantics on HINs. The

solution is non-trivial due to the heterogeneity and the need

for efficient and effective sample generation.

(2) We propose a novel framework HeGAN that is not only relation-

aware to capture rich semantics, but also equipped with a gen-

eralized generator that is effective and efficient.

(3) We perform experiments on four public datasets on a series

of downstream tasks. Results demonstrate that HeGAN consis-

tently and significantly outperform various state-of-the-arts.



Table 1: Summary of notations

Notion Explanation

G a heterogeneous information network (HIN)

V, E the set of node and edges, resp.

A,R the set of node and edge types, resp.

eG , eD node embedding of generator and discriminator, resp.

MG ,MD
relation matrix of generator and discriminator, resp.

θG ,θD parameters of generator and discriminator, resp.

2 PRELIMINARY
In this section, we formalize the problem of HIN embedding and

introduce the background on GAN. Main notations are summarized

in Table 1, including those to be introduced in Sect. 3.

HINembedding.Our study focuses on heterogeneous information

networks [28], which can be defined as follows.

Definition 1. Heterogeneous information network (HIN). A
HIN G = {V, E,A,R,ϕ,φ} is a form of graph, where V and E
denote the sets of nodes and edges, respectively. It is also associated
with a node type mapping function ϕ : V → A and an edge type
mapping function φ : E → R , whereA and R denote the sets of node
and edge types such that |A| + |R | > 2.

An example of HIN is illustrated in Fig. 1(a) on bibliographic data.

Observe that it consists of multiple node types (e.g., author, paper,
conference and term) and their semantic relations (e.g., author–
write–paper, paper–contain–term).

The goal of HIN embedding is to learn a mapping function to

project each node v ∈ V to a low-dimensional space Rd , where
d ≪ |V|. Node representations in the new space should preserve

not only the structure, but also the rich semantics on the HIN.

Generative adversarial networks. Our work is inspired by the

recent success of GANs, which can be viewed as a minimax game

between two players, namely, generator G and discriminator D, in
the following manner.

min

θG
max

θD
Ex∼Pdata

[
logD (x ;θD )

]

+ Ez∼PZ
[
log

(
1 − D (G (z;θG );θD )

)]
. (1)

The generator G tries to generate fake samples as close to the

true data as possible with the noise z from a predefined distribution

PZ , where θG denotes the parameters of the generator. On the

contrary, the discriminator D aims to distinguish real data from

the distribution P
data

and fake data from the generator, where θD

denotes the parameters of the discriminator. In practice, GAN has

been found [25] to often work better if the generator minimizes

− logD (G ( · ;θG );θD ) instead of log

(
1 − D (G ( · ;θG );θD )

)
.

3 THE PROPOSED APPROACH: HeGAN
In this section, we present the proposed model HeGAN, a novel

HIN embedding approach based on GAN. We begin with the overall

framework, followed by elaborations on our discriminator and

generator. Lastly, we discuss the optimization of our framework, as

well as comparison to other models.

3.1 Overall Framework of HeGAN
As shown in Fig. 1(c), our framework mainly consists of two com-

peting players, the discriminator and the generator. Given a node,

the generator attempts to produce fake samples associated with

the given node to feed into the discriminator, whereas the discrim-

inator tries to improve its parameterization to separate the fake

samples with the real ones actually connected to the given node.

The better trained discriminator would then force the generator to

produce better fake samples, and the process is repeated. During

such iterations, both the generator and discriminator receives mu-

tual, positive reinforcement. While this setup may appear similar

to previous efforts [4, 9, 22, 33, 38] on GAN-based network embed-

ding, we employ two major novelties to address the challenges of

adversarial learning on HINs.

First, existing studies only leverage GAN to distinguish whether

a node is real or fake w.r.t. structural connections to a given node,

without accounting for the heterogeneity in HINs. For example,

given a paper p2, they treat nodes a2,a4 as real, whereas a1,a3 are
fake simply based on the topology of the HIN shown in Fig. 1(a).

However, a2 and a4 are connected to p2 for different reasons: a2
writes p2 and a4 only views p2. Thus, they miss out on the valu-

able semantics carried by HINs, unable to differentiate a2 and a4
even though they play distinct semantic roles. Towards semantic-

preserving embedding, we introduce a relation-aware discriminator

and generator, to differentiate various types of semantic relation

between nodes. On our toy HIN, given a paper p2 as well as a re-
lation, say, write/written, our discriminator is able to tell apart a2
and a4, and our generator will try to produce fake samples more

similar to a2 instead of a4.
Second, existing studies are limited in sample generation in both

effectiveness and efficiency. They typically model the distribution of

nodes using some form of softmax over all nodes in the original net-

work. In terms of effectiveness, their fake samples are constrained

to the nodes in the network, whereas the most representative fake

samples may fall “in between” the existing nodes in the embedding

space. For example, given a paper p2, they can only choose fake

samples from V , such as a1 and a3. However, both may not be

adequately similar to real samples such as a2. Towards a better

sample generation, we introduce a generalized generator that can

produce latent nodes such as a′ shown in Fig. 1(c), where it is pos-

sible that a′ < V . For instance, a′ could be the “average” of a1 and
a3 and is more similar to the real sample a2. In terms of efficiency,

the softmax function is expensive to compute, and approximations

such as negative sampling and Graph Softmax must be employed.

In contrast, our generator can sample fake nodes directly without

using a softmax.

3.2 Discriminator and Generator in HeGAN
In the ensuing discussion, we shall zoom into the proposed discrim-

inator and generator for HeGAN .

3.2.1 Relation-aware discriminator. As motivated, on a HIN it is

imperative to distinguish real and fake nodes under a given relation.

Thus, our relation-aware discriminator D (ev |u, r ;θ
D ) evaluates the

connectivity between the pair of nodes u and v w.r.t. a relation r .
Specifically, u ∈ V is a given node and r ∈ R is a given relation

from the HIN G, ev is the embedding of a sample node v (which



can be real or fake), and θD denotes the model parameters of D. In
essence, D outputs a probability that the sample v is connected to

u under the relation r . We quantify this probability as:

D (ev |u, r ;θD ) =
1

1 + exp
(
−eDu

⊤MD
r ev
) , (2)

where ev ∈ Rd×1 is the input embedding of the sample v , eDu ∈
Rd×1 is the learnable embedding of node u, and MD

r ∈ R
d×d

is a

learnable relation matrix for relation r . θD = {eDu : u ∈ V,MD
r :

r ∈ R} form the model parameters of D, i.e., the union of all node

embeddings and relation matrices learnt by D.
Naturally, the probability should be high when v is a positive

sample related to u through r , or low when it is a negative sample.

In general, a sample v form a triple ⟨u,v, r ⟩ together with the given

u and r , and each triple belongs to one of the three cases below with

regard to its polarity. Each case also contributes to one part of the

discriminator’s loss, inspired by the idea of conditional GAN [25].

Case 1: Connected under given relation. That is, nodes u and

v are indeed connected through the right relation r on the HIN G,

such as ⟨a2,p2,write⟩ shown in Fig. 1(a). Such a triple is considered

positive and can be modeled by the below loss.

LD
1
= E⟨u,v,r ⟩∼PG − logD (eDv |u, r ). (3)

Here we draw the positive triple from the observed G, denoted as

⟨u,v, r ⟩ ∼ PG .

Case 2: Connected under incorrect relation. That is, u and v
are connected in the HIN under a wrong relation r ′ , r , such as

⟨a2,p2, view⟩. The discriminator is expected to mark them as nega-

tive too, as their connectivity does not match the desired semantics

carried by the given relation r . We define this part of loss as follows.

LD
2
= E⟨u,v⟩∼PG,r ′∼PR′ − log

(
1 − D (eDv |u, r

′)
)
. (4)

Here, we still draw the pair of nodes ⟨u,v⟩ from G, but the negative
relation r ′ is drawn from R ′ = R \ {r } uniformly.

Case 3: Fakenode fromrelation-aware generator.That is, given
a node u ∈ V , it can form a fake pair with the node v supplied by

the generator G (u, r ;θG ), such as ⟨a′,p2,write⟩ in Fig. 1(c). As we

shall see later in Sect. 3.2.2, the generator is also relation-aware:

it attempts to generate a fake node’s embedding that mimics the

real nodes connected to u under the correct relation r . Again, the
discriminator aims to identify this triple as negative, which can be

formulated as follows.

LD
3
= E⟨u,r ⟩∼PG,e′v∼G (u,r ;θG ) − log

(
1 − D (e′v |u, r )

)
. (5)

Note that the fake sample v’s embedding e′v is drawn from the

generator G’s learnt distribution. As we shall see in Sect. 3.2.2, it

is distinct from G’s own model parameters θG . On the other hand,

the discriminator D simply treats e′v as non-learnable input, and

only optimizes its own parameters θD .
It is worth noting that, arguably there could be a fourth case,

where the triple is a fake pair from a relation-oblivious generator.

However, such negative triples are believed to be more easily sep-

arated from the positives than the negatives in Case 2 or 3. Thus,

we do not consider them here, although our model is flexible to

incorporate this fourth case.

We integrate the above three parts to train the discriminator:

LD = LD
1
+ LD

2
+ LD

3
+ λD ∥θD ∥2

2
, (6)

where λD > 0 controls the regularization term to avoid overfit-

ting. The parameters θD of the discriminator can be optimized by

minimizing LD
.

3.2.2 Relation-aware, generalized generator. The goal of our gener-
atorG ( · ;θG ) is to generate fake samples to mimic the real one. On

the one hand, G is relation-aware just as the discriminator. Thus,

given a node u ∈ V and a relation r ∈ R , the generatorG (u, r ;θG )
aims to generate a fake node v likely to connect to u in the context

of relation r . In other words, v should be as close as possible to a

real node, say,w such that ⟨u,w, r ⟩ ∼ PG . On the other hand, our

generator is generalized, which means the fake nodev can be latent

and not found inV .

To meet the two requirements, our generator should also employ

relation-specific matrices (for relation-awareness), and generate

samples from an underlying continuous distribution (for generaliza-

tion). In particular, we leverage the following Gaussian distribution:

N (eGu
⊤
MG
r ,σ

2I), (7)

where eGu ∈ Rd×1 and MG
r ∈ R

d×d
denote the node embedding

of u ∈ V and the relation matrix of r ∈ R for the generator. In

other words, it is a Gaussian distribution with mean eGu
⊤MG

r and

covariance σ 2I ∈ Rd×d for some choices of σ . Intuitively, the mean

represents a fake node likely to be connected to u by relation r , and
the covariance represents potential deviations. One naïve solution

is to directly generate samples fromN (eGu
⊤MG

r ,σ
2I). Nevertheless,

as neural networks have shown strong ability in modeling complex

structure [15], we integrate the multi-layer perceptron (MLP) into

the generator for enhancing the expression of the fake samples.

Hence, our generator is formulated as follows,

G (u, r ;θG ) = f (WL · · · f (W1e + b1) + bL ), (8)

where we draw e from the distribution N (eGu
⊤MG

r ,σ
2I). Here W∗

and b∗ respectively denote the weight matrix and the bias vector

for each layer, and f is an activation function. The parameter set of

the generator is thus θG = {eGu : u ∈ V,MG
r : r ∈ R,W∗, b∗}, i.e.,

the union of all node embeddings and relation matrices, as well as

the parameters of MLP.

As motivated earlier, the generator wishes to fool the discrimi-

nator by generating close-to-real fake samples, such that the dis-

criminator gives high score to them.

LG = E⟨u,r ⟩∼PG,e′v∼G (u,r ;θG ) − logD (e′v |u, r ) + λ
G ∥θG ∥2

2
, (9)

where λG > 0 controls the regularization term. The parameters θG

of the generator can be optimized by minimizing LG .

3.3 Optimization and Complexity Analysis
We adopt the iterative optimization strategy to train HeGAN. In

each iteration, we alternate the training between the generator

and discriminator. Specifically, we first fix θG , and generate fake

samples to optimize θD and thus improve the discriminator. Next,

we fix θD , and optimize θG in order to produce increasingly better

fake samples as evaluated by the discriminator. We repeat the above



Algorithm 1Model training for HeGAN

Require: HIN G, number of generator and discriminator trainings

per epoch nG ,nD , number of samples ns
1: Initialize θG and θD for G and D, respectively
2: while not converge do
3: for n = 0; n < nD do ▷ Discriminator training
4: Sample a batch of triples, i.e., ⟨u,v, r ⟩ ∼ PG
5: Generate ns fake nodes e′v ∼ G (u, r ;θG ) for each ⟨u, r ⟩
6: Sample ns relations r

′ ∼ PR′ for each ⟨u,v⟩
7: Update θD according to Eq. 6

8: end for
9: for n = 0; n < nG do ▷ Generator training
10: Sample a batch of triples, i.e., ⟨u,v, r ⟩ ∼ PG
11: Generate ns fake nodes e′v ∼ G (u, r ;θG ) for each ⟨u, r ⟩

12: Update θG according to Eq. 9

13: end for
14: end while
15: return θG and θD

Table 2: Description of datasets.

Datasets #Nodes #Edges #Node types #Labels

DBLP 37,791 170,794 4 4

Yelp 3,913 38,680 5 3

Aminer 312,776 599,951 4 6

Movielens 10,038 1,014,164 5 N.A.

process for more iterations until our model converges. The model

training for HeGAN is outlined in Algorithm 1.

We now conduct a complexity analysis. The updating of the

generator and discriminator in each iteration mainly involve the

updating of node vectors and relation matrices, whose time com-

plexity is O (ns · |V | · d
2), where ns is the number of samples,

|V | is the number of nodes and d is the embedding dimensional-

ity. Hence, the complexity of training our model per iteration is

O ((nG +nD ) ·ns · |V | ·d
2), where nG and nD are the number of gen-

erator and discriminator training per iteration, respectively. Since

we treat nG , nD , ns and d as small constants, the complexity of each

iteration in our model is linear with the number of nodes in the

HIN, i.e., |V |, indicating the efficiency and scalability of HeGAN.

4 EXPERIMENTS
In this section, we evaluate the effectiveness of HeGAN on a wide

range of tasks, including node clustering and classification, as well

as link prediction and recommendation. We further analyze the

model performance in the contexts of the underlying mechanism,

efficiency and parameter sensitivity.

4.1 Experimental Setup
4.1.1 Datasets. We conduct extensive experiments on four bench-

mark datasets [12, 15], namely DBLP (with four types of nodes:

author, paper, conference and term), Yelp (user, business, service, star
and reservation), AMiner (author, paper, conference and reference),
and Movielens (user, movie, age, occupation and type). We orga-

nize them into HINs, as summarized in Table 2. On the first three

Table 3: Performance comparison on node clustering. (bold:
best; underline: runner-up)

Methods DBLP Yelp AMiner

Deepwalk 0.7398 0.3306 0.4773

LINE-1st 0.7412 0.3556 0.3518

LINE-2nd 0.7336 0.3560 0.2144

GraphGAN 0.7409 0.3413 -

ANE 0.7138 0.3145 0.4483

HERec-HNE 0.7274 0.3476 0.4635

HIN2vec 0.7204 0.3185 0.2812

Metapath2vec 0.7675 0.3672 0.4726

HeGAN 0.7920∗∗ 0.4037∗∗ 0.5052∗∗

datasets, we perform node classification and clustering w.r.t. the
given labels, as well as link prediction. Movielens is reserved for

a recommendation task. Task descriptions will be postponed until

their respective experiments.

4.1.2 Baselines. We consider three categories of network embed-

ding methods: traditional (Deepwalk, LINE), GAN-based (Graph-

GAN, ANE) and HIN (HERec-HNE, HIN2vec, Metapath2vec) em-

bedding algorithms.

• Deepwalk [23] performs truncated random walks on networks,

and employs the skip-gram model.

• LINE [31] exploits the first (LINE-1st) and second (LINE-2nd)
order proximity in networks.

• GraphGAN [33] unifies generative and discriminative learning

with GAN in a minimax game.

• ANE [9] adopts the adversarial learning principle to push the

latent representations towards a fixed posterior distribution.

• HERec-HNE [27] designs a type-constrained strategy to filter

node sequences for semantic-preserving HIN embedding.

• HIN2vec [12] learns latent representations of both nodes and

meta-paths jointly, and thus preserves the semantics of HINs.

• Metapath2vec [11] samples meta-path-based random walks for

semantic-preserving HIN embedding.

4.1.3 Implementation. Working details, including hyperparameter

settings, will be discussed in the reproducibility supplement.Wewill

also study the impact of hyperparameters in HeGAN in Sect. 4.3.4.

4.1.4 Significance Test. For tabular results in Tables 3, 4 and 5, we

use ** (or *) to indicate that HeGAN is significantly different from

the runner-up method based on paired t-tests at the significance
level of 0.01 (or 0.05).

4.2 Experimental Analysis
In this section, we empirically compare HeGAN and the baselines

on various downstream tasks. Note that we do not report the results

of GraphGAN on the AMiner dataset, since it cannot run on this

large dataset even on a machine with 256GB memory.

4.2.1 Node Clustering. We employ the K-Means algorithm to per-

form clustering, and evaluate the clustering quality in terms of

normalized mutual information (NMI) w.r.t. the node labels.

libra




Table 4: Performance comparison on node classification. (bold: best; underline: runner-up)

Methods

DBLP Yelp AMiner

Micro-F1 Macro-F1 Accuracy Micro-F1 Macro-F1 Accuracy Micro-F1 Macro-F1 Accuracy

Deepwalk 0.9201 0.9242 0.9298 0.8262 0.7551 0.8145 0.9519 0.9460 0.9529

LINE-1st 0.9239 0.9213 0.9285 0.8229 0.7440 0.8126 0.9776 0.9713 0.9788

LINE-2nd 0.9144 0.9172 0.9236 0.7591 0.5518 0.7571 0.9469 0.9341 0.9471

GraphGAN 0.9198 0.9210 0.9286 0.8098 0.7268 0.7820 - - -

ANE 0.9143 0.9153 0.9189 0.8232 0.7623 0.7932 0.9256 0.9203 0.9221

HERec-HNE 0.9214 0.9228 0.9299 0.7962 0.7713 0.7912 0.9801 0.9726 0.9784

HIN2vec 0.9141 0.9115 0.9224 0.8352 0.7610 0.8200 0.9799 0.9775 0.9801

Metapath2vec 0.9288 0.9296 0.9360 0.7953 0.7884 0.7839 0.9853 0.9860 0.9857

HeGAN 0.9381∗∗ 0.9375∗∗ 0.9421∗∗ 0.8524∗∗ 0.8031∗∗ 0.8432∗∗ 0.9864∗ 0.9873∗ 0.9883∗

Based on the results in Table 3, we make the following obser-

vations. (i) HeGAN is consistently better than all the baselines,

demonstrating its effectiveness for learning representations in HINs.

(ii) Among the baselines, HIN embedding methods (i.e., HERec-
HNE, HIN2vec and Metapth2vec) generally outperform traditional

methods, implying the importance of semantic-preserving embed-

ding. (iii) HeGAN significantly outperforms both HIN and GAN-

based (i.e., ANE and GraphGAN) embedding methods, showing

that our model can learn semantic-preserving representations in a

robust manner through the adversarial principle. Overall, HeGAN

achieves performance gains over the best baseline by 3%, 10% and

6% on the three datasets, respectively.

4.2.2 Node Classification. We use 80% of the labeled nodes to train

a logistic regression classifier, and test the classifier on the remain-

ing 20% nodes.

Since the tasks are multi-class, We report Macro-F1, Micro-F1
and Accuracy on the test set in Table 4. Similar conclusions to the

node clustering task can be drawn, where HeGAN consistently

outperforms the best baseline with statistical significance. It is also

worth noting that our performance margins over the best baseline

becomes smaller compared to the node clustering task, since in

classification all methods are helped by the supervision, narrowing

their gaps.

4.2.3 Link Prediction. In this task, we predict user-business links
on Yelp, and author-paper links on DBLP and AMiner. We randomly

hide 20% of such links from the original network as the ground

truth positives, and randomly sample disconnected node pairs of

the given form as negative instances. The ground truth serves as our

test set. Subsequently, we utilize the residual network to learn node

representations. After obtaining the node representations, we adopt

two ways to perform link prediction, namely, logistic regression and

inner product. To train the logistic regression classifier, we used

links and negative instances from the residual network without

overlapping with the test set.

Since this is a binary task, we adopt Accuarcy, AUC and F1 as
evaluation metrics, as shown in Table 5. Again, similar conclusions

can be drawn, where HeGAN consistently and significantly outper-

form all the baselines, except for one case. We further observe that,

the performance lead of HeGAN over the best baseline is much

larger with inner product than with logistic regression. In partic-

ular, in terms of F1 scores, with inner product we outperform the
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Figure 2: Performance comparison on the Movielens recom-
mendation task.

best baseline by 6%, 7% and 11% on the three datasets, respectively,

whereas with logistic regression the improvement is only about

2%. We hypothesize that HeGAN innately learns a much better

structure- and semantics-preserving embedding space than the

baseline methods, since the inner product only relies on the learnt

representations without resorting to any external supervision.

4.2.4 Recommendation. We adopt the Movielens dataset for the

recommendation task. For each user, we aim to recommend a set of

unseen movies which may be liked by the user. Following [15], we

adopt the leave-one-out method for evaluation, i.e., the last movie

of each user is held out for testing, and the remaining data are used

for training the node embeddings. During testing, we select top-K
movies with the highest inner product with the target user, and

evaluate the recommendation performance with HR@K (hit ratio)

and NDCG@K .
We report the results of HeGAN and three representative base-

lines, namely, Deepwalk, GraphGAN andMetapath2vec. From Fig. 2,

we observe that HeGAN consistently outperforms all the baselines

across allK values on both evaluationmetrics. For example, HeGAN

outperforms the baselines by 41∼106% in HR@10, and 44∼126%

in NDCG@10. This task shows the effectiveness of HeGAN on a

ranking-based objective. It is worth noting that Metapth2vec is not

performing well in this task. One hypothesis is that there is a lack

of meaningful meta-paths in the Movielens dataset.

4.2.5 Network Visualization. To examine the network represen-

tations intuitively, we visualize the embeddings of business nodes
in Yelp using the t-SNE [20] algorithm in Fig. 3. From the plots,



Table 5: Performance comparison on link prediction. (bold: best; underline: runner-up)

Methods

DBLP Yelp AMiner

Accuracy AUC F1 Accuracy AUC F1 Accuracy AUC F1

Deepwalk 0.5441 0.5630 0.5208 0.7161 0.7825 0.7182 0.4856 0.5182 0.4618

LINE-1st 0.6546 0.7121 0.6685 0.7226 0.7971 0.7099 0.5983 0.6413 0.6080

LINE-2nd 0.6711 0.6500 0.6208 0.6335 0.6745 0.6499 0.5604 0.5114 0.4925

Logistic GraphGAN 0.5241 0.5330 0.5108 0.7123 0.7625 0.7132 - - -

ANE 0.5123 0.5430 0.5280 0.6983 0.7325 0.6838 0.5023 0.5280 0.4938

Regression HERec-HNE 0.7123 0.7823 0.6934 0.7087 0.7623 0.6923 0.7089 0.7776 0.7156

HIN2vec 0.7180 0.7948 0.7006 0.7219 0.7959 0.7240 0.7142 0.7874 0.7264

Metapath2vec 0.5969 0.5920 0.5698 0.7124 0.7798 0.7106 0.7069 0.7623 0.7156

HeGAN 0.7290∗∗ 0.8034∗∗ 0.7119∗∗ 0.7240∗∗ 0.8075∗∗ 0.7325∗∗ 0.7198∗∗ 0.7957∗∗ 0.7389∗∗

Deepwalk 0.5474 0.7231 0.6874 0.5654 0.8164 0.6953 0.5309 0.6064 0.6799

LINE-1st 0.6647 0.7753 0.7363 0.6769 0.7832 0.7199 0.6113 0.6899 0.7123

LINE-2nd 0.4728 0.4797 0.6325 0.4193 0.7347 0.5909 0.5000 0.4785 0.6666

Inner GraphGAN 0.5532 0.6825 0.6214 0.5702 0.7725 0.6894 - - -

ANE 0.5218 0.6543 0.6023 0.5432 0.7425 0.6324 0.5421 0.6123 0.6623

Product HERec-HNE 0.5123 0.7473 0.6878 0.5323 0.6756 0.7066 0.6063 0.6912 0.6798

HIN2vec 0.5775 0.8295 0.6714 0.6273 0.8340 0.4194 0.5348 0.6934 0.6824

Metapath2vec 0.4775 0.6926 0.6287 0.5124 0.6324 0.6702 0.6243 0.7123 0.6953

HeGAN 0.7649∗∗ 0.8712∗∗ 0.7837∗∗ 0.7391∗∗ 0.8298 0.7705∗∗ 0.6505∗∗ 0.7431∗∗ 0.7752∗∗

(a) Deepwalk (b) GraphGAN (c) Metapath2vec (d) HeGAN

Figure 3: Visualization of representative baselines and HeGAN on Yelp. Color indicates the category of business.

we find that Deepwalk and GraphGAN cannot effectively identify

different business categories due to the ignorance of heterogeneity.

On the other hand, Metapath2vec and HeGAN both can reasonably

separate the business categories, while HeGAN has a more crisp

boundary and denser clusters.

4.3 Model Analysis on HeGAN
Next, we perform a series of analysis to better understand the

underlying mechanism of HeGAN, as well as its efficiency and

hyperparameter choices.

4.3.1 Adversarial Learning. First of all, in Fig. 4 we present the

learning curves of the generator and the discriminator of HeGAN

on Yelp, in terms of the change in the loss and the clustering quality.

After some initial fluctuations in their losses, the generator and the

discriminator starts to play a minimax game, gradually decreasing

the losses of both. After about 20 epochs of adversarial training, the

losses of both tend to converge, and the winner (i.e., the discrimi-

nator) achieves a better performance. Note that when more epochs

are trained, the clustering quality decreases due to overfitting.

4.3.2 Heterogeneity and Generalized Generator. In this section, we

study if HeGAN can effectively utilize heterogeneous information
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Figure 4: Learning curves of HeGAN on Yelp.

in HINs, and also if our generalized generator is effective. In partic-

ular, we compare HeGAN with GraphGAN (the closest baseline to

ours) and a variant of our model named HeGAN-hete (i.e., HeGAN
without heterogeneous information, by assuming that all relations

belong to the same type). We report their performance on node

clustering and classification in Fig. 5. We find that the overall per-

formance order is HeGAN > HeGAN-hete > GraphGAN. Such an

ordering is not surprising, and reveals two major implications. First,
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Figure 6: Efficiency evaluation on three datasets. (a) Time
per generator training in log scale. (b) Time per training
epoch in log scale. (c) Scalability study w.r.t. the number of
nodes (×104) in linear scale.

different types of nodes and relations in HINs should be distin-

guished, as disregarding such information leads to the worse per-

formance of HeGAN-hete compared to HeGAN . Second, between

HeGAN-hete and GraphGAN, as both do not utilize heterogeneous

information, their key difference lies in their generators. In partic-

ular, our model is generalized, in the sense that it generates fake,

potentially latent, samples from a continuous Gaussian distribu-

tion, whereas GraphGAN generates only pick fake nodes from the

original network. The result shows that our generalized generator

can indeed produce more representative samples.

4.3.3 Efficiency. As mentioned above, our generalized generator

draw samples directly from a continuous distribution, which signifi-

cantly accelerate the training of generators. In contrast, GraphGAN

employs Graph Softmax in its generator—although it is much more

efficient than the normal softmax, it is not as fast as the generator

of HeGAN. We report the updating time per generator training

and per overall training epoch in Fig. 6(a) and (b), respectively. As

shown, HeGAN runs about ten times faster than GraphGAN for

both generator and overall training, demonstrating that our gener-

ator is not only effective, but also efficient. (Note that GraphGAN

cannot run on AMiner due to memory constraint.)

We also conduct a scalability study, by sampling a few smaller

sub-networks fromAminer. The results are shown in Fig. 6(c), where

the running time of HeGAN increases linearly w.r.t. the number of

nodes, consistent with our complexity analysis in Sect. 3.3.

4.3.4 Parameter Analysis. Finally, we investigate the impact of the

parameters in the following categories, using the node clustering

quality as a reference. Similar patterns have been observed on the

performance of other tasks.
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Figure 7: Impact of parameters on HeGAN.

First, the number of generator and discriminator training per

epoch, nG and nD . They control the balance between the two play-

ers. We run a grid search over {1, 5, 10, 15, 20}2 and plot their per-

formance in Fig. 7(a). HeGAN achieves the optimal performance

near (5, 15), i.e., nG = 5,nD = 15. In general, the performance is

stable when the discriminator is trained more than the generator,

i.e., when nD ≥ 10 and nG ≤ 10. This observation is consistent

with previous findings [1].

Second, the embedding dimension, d . As shown in Fig. 7(b),

overall our model is not sensitive to this parameter. Nevertheless,

the optimal performance is obtained when d is 64 or 128.

Third, the variance of Gaussian distribution, σ 2
. As shown in

Fig. 7(c), our model achieves optimal performance when σ 2 = 1.0

and is generally stable around that value, although too small or

large values (such as σ 2 < 0.1) would harm the model.

5 RELATEDWORK
We review the most related work in network embedding, HIN

embedding and generative adversarial networks.

Network embedding.Network embedding [3, 8] has shown its po-

tential to learn structure-preserving node representations, and has

been successfully applied tomany data mining tasks. Contemporary

methods usually explore network topology as context information,

based on random walks (e.g., Deepwalk [23] and node2vec [14]),

neighborhoods (e.g., LINE [31] and SDNE [32]) or high-order prox-

imity (i.e., GraRep [5], NEU [36] and AROPE [40]). Unfortunately,

these methods only deal with homogeneous networks, and thus

they cannot learn semantic-preserving representations in HINs.

Meanwhile, recently emerged graph neural networks (e.g.,GCN [18])

are proposed for representation learning in an end-to-end manner

with task-specific supervision. Their goals differ from our scope,

which aims to learn node presentations in an unsupervised manner

to support arbitrary downstream tasks.

HIN embedding. Recently, heterogeneous information networks

(HIN) [28] have been proposed to model complex entities and their

rich relations in various applications [7, 16, 17, 27, 34, 39]. To marry

the advantages of HIN and network embedding, numerous meth-

ods [11, 26, 29, 30] have been proposed for representation learning

inHINs. Onemajor line of work leveragesmeta-path-based contexts

for semantic-preserving embedding, including meta-path-based

similarity [26] and meta-path-based neighbors [11]. Note that these

methods rely on domain knowledge to choose the right meta-paths,

whereas there also exist a few methods [6, 12, 29, 30] which do

not require meta-path selection. Moreover, task-specific embedding

learning in HINs [7, 27, 34] has also been explored recently, which



departs from our goal to learn structure- and semantic-preserving

representations to support arbitrary tasks.

Generative adversarial networks. Generative adversarial net-

works (GANs) [13] have demonstrated superior performance in

many problems [19, 35, 37]. They hinge on the principle of adver-

sarial learning, where a generator and discriminator compete with

each other to improve their outcomes. Inspired by GANs, a few

studies [4, 9, 22, 33, 38] leverage the adversarial principal to learn

more robust representations. Some of them [4, 9, 22, 38] impose

a fixed prior distribution on the embedding space to enhance the

robustness of the learned representations. However, these methods

ignore the heterogeneity of nodes and relations, and thus cannot

capture the rich semantics on HINs.

6 CONCLUSION
In this paper, we proposed a novel framework called HeGAN for

HIN embedding based on the adversarial principle. We elaborately

designed the relation-aware discriminator and generator to fit the

heterogeneous setting. Specifically, w.r.t. to a given relation, the

discriminator can tell whether a node pair is real or fake, whereas

the generator can produce fake node pairs that mimic real pairs. To

further improve the effectiveness and efficiency of sample genera-

tion, we proposed a generalized generator, which is able to directly

sample latent nodes from a continuous distribution. Expensive ex-

perimental results have verified the effectiveness and efficiency of

HeGAN on various tasks.
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A IMPLEMENTATION DETAILS
A.1 Environment
We implement the proposed model using the Python library Tensor-

flow
1
. All the experiments are conducted on a Linux server with one

GPU (GeForce RTX) and CPU (Intel Xeon W-2133). We release the

source code of HeGAN at https://github.com/librahu/HeGAN. And

the data in the paper is available at https://github.com/librahu/HIN-

Datasets-for-Recommendation-and-Network-Embedding

A.2 Parameter Settings for HeGAN
We perform Adaptive Moment Estimation (Adam) to optimize our

model with learning rate 0.0001. Moreover, we set the regulariza-

tion parameters for the generator and discriminator to λD = λG =
0.0001, and utilize a two-layer MLP with a ReLU activation function

for the generator. For each iteration of generator and discriminator

training, we use a batch size of 32 and set the number of sam-

ples to ns = 16. We run nG = 5 iterations of generator training

and nD = 15 iterations of discriminator training in each epoch.

Careful initialization of neural network model is crucial to avoid

poor local minima. Hence, HeGAN initializes initial embeddings in

generator and discriminator from a pretrained embedding model

(Metapath2vec).

A.3 Parameter Settings for Baselines
The embedding dimensions for all methods are set as 64. For random

walk-based methods (i.e., Deepwalk, HIN2vec and Metapath2vec),

we set the number of walks per node to w = 10, the walk length

to l = 100 and the window size to τ = 5. For HIN embedding

methods (i.e., HERec-HNE and Metapath2vec), we select the meta-

paths APCPA, UBStBU, APCPA and UMTMU in DBLP, Yelp, AMiner

and Movielens, respectively, since they have the best performance

under these meta-paths. For LINE, we set the number of samples

as 10000. For GraphGAN, we set the learning rate as 0.001 and

the number of samples as 20. For ANE, we follow the parameter

settings in the original paper.

1
https://www.tensorflow.org/
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