Commonsense Knowledge Graph towards Super APP

and Its Applications in Alipay

Xiaoling Zang*, Binbin Hu*, Jun Chu, Zhiqiang Zhang, Gangnan Zhang, Jun Zhou, Wenliang Zhong Ant Group

Experiments & Applications

Compared to AliCoCos

✓ Heterogeneous and unstructured data source

	AliCoCo	AliCoCo2	SupKG
# Entity	57, 125	163, 460	17, 343, 492
# Relation type	2	91	88
# Relation instance	131, 968	813, 315	103, 526, 390

SupKG has to deal with a lot of vanilla text of rather multiplex and heterogeneous behaviors, covering city service, traveling, entertainment, health care, and so on

✓ Distinct emphasis from e-commerce for relation extraction

(SupKG aims at answering "which service is needed at what time and where")

✓ More powerful representation capability

Incorporating language representations in the information propagation process is a more reasonable way for complementing textual and structural information.

CL empowers the representation		More optimization-friendly in learning hierarchy		
Hit@5 Hit@10 Hit@15 Hit@20 MRI	l ii			
AliCoCo2 0.2298 0.2844 0.3009 0.3128 0.169	- 1 L	Hit@5 Hit@10 Hit@15 Hit@20 MRR		

Over	performance c	comparison

Supplementing potential knowledge

		MDD	-				
Methods	K = 5	K = 10	K = 15	K = 20	MRR		
TransE [4]	0.2346	0.3145	0.3652	0.4019	0.1555	_	
TransR [19]	0.1751	0.2247	0.2622	0.2916	0.1410	-	
TransD [17]	0.2483	0.3068	0.3407	0.3638	0.1834		
TransH [29]	0.2488	0.3071	0.3419	0.3667	0.1828	_	
ConvE [10]	0.1658	0.2229	0.2718	0.3133	0.1234	-	
RESCAL [22]	0.2825	0.3238	0.3487	0.3681	0.2206	-	
BLP [9]	0.2299	0.3115	0.3613	0.3981	0.1515		
HAKE [33]	0.2169	0.2541	0.2732	0.2871	0.1669		
RGCN [24]	0.0675	0.0962	0.1189	0.1414	0.0526		
KGNN [15]	0.1477	0.2187	0.2699	0.3128	0.1053		
AliCoCo2 [20]	0.3402	0.4395	0.4705	0.4926	0.2433		
OURS	0.3557	0.4446	0.4954	0.5310	0.2571		
Table 3: Quantitative comparison of different methods.							

Ablation study

тт	CS	111		Hit@K				MDD
11	GS			K = 5	K = 10	K = 15	K = 20	MIKK
\checkmark		1	\checkmark	0.2605	0.3032	0.3319	0.3548	0.2095
	\checkmark	\checkmark	\checkmark	0.2576	0.3076	0.3408	0.3664	0.2014
\checkmark	\checkmark			0.2102	0.2897	0.3417	0.3822	0.1485
\checkmark	\checkmark	\checkmark		0.3341	0.4236	0.4786	0.5186	0.2462

Source entity	Relation	Target entities retrieved
Musical instrument shop (乐器行)	scene_related_prod	Ukulele (乌克里里), Folk drum (民族鼓), Violin (小提琴), old records (老唱片) Percussion instrument (敲打乐器)
CBA	activity_need_prod	Basketball shoes (篮球鞋), Basketball (篮球), Sneaker (球鞋), Jersey (球衣)
Anti-inflammatory (消炎药)	prod_in_scene	│ Drugstore (药店), Fair-price drugstore (平价药店), TCM pharmacy (中药坊), Children's hospital (儿童医院), Community hospital (社区医院)
Bartending (调酒)	intent_related_food	Cocktail (鸡尾酒), Blueberry wine(蓝莓酒),Plum wine(青梅酒), Foreign wine(洋酒)
Family trip (亲子游)	intent_related_scene	Parent-child park(亲子乐园), Adventure park (探险乐园), wild animal park(野生动物园)

OURS	0.2514	0.2950	0.51/9	0.5405	0.1904
------	--------	--------	--------	--------	--------

Table 7: Performance comparison with Alicoco2 on triplets < h, r, t > with semantic distance $\cos(h, t) \ge \delta$. Here h, t are semantic embedding from BERT for head and tail entities, respectivel

Ours-HyL 0.3339 0.4406 0.4900 0.5246 OUS 0.3557 0.4446 0.4954 0.5310 0.2571 Table 8: Hyperbolic loss (i.e., "Ours-HyL") versus polar dinate system (i.e., "OUS") in the pro

MRR

0.2359 0.3254 0.3826 0.42510.1651 0.3557 0.4446 0.4954 0.5310 0.2571 Table 4: Ablation studies of our proposal. "TI" means textual information; "GS" means graph structure; "HL" means hierarchy aware learning module; "CL" means contrastive learning module.

Conclusions

- We propose SupKG, a commonsense knowledge graph toward Super APP to help comprehensively characterize user behaviors across different business scenarios in a more fine-grained manner.
- We devise a novel representation learning framework, enabling various applications to draw support from effective representations of entities and relations from SupKG.
- A series of offline/online to demonstrate that i) the proposed representation learning framework could substantially help supplement potential knowledge for SupKG; ii) the learned embedding and SupKG could well warm up various downstream by provide high-quality SupKG knowledge.

www.PosterPresentations.com