

Commonsense Knowledge Graph towards Super APP and Its Applications in Alipay

KDD2023

Xiaoling Zhang*, <u>Binbin Hu*</u>, Jun Chu, Zhiqiang Zhang, Gangnan Zhang, Jun Zhou, Wenliang Zhong Ant Group, Hangzhou, China

Background Why Commonsense Knowledge Graph towards Super APP?

4 Method Challenge

🙀 购买自住住房

▲ 终止劳动关系

1 相信自住住房

🟫 偿还购房贷款

火车订餐

Challenges Textual and structural information complement each other in KGE

Both structural match and semantic match matters (< *Chinese gold,brand provide service, Jewelry* >)

 SupKG exhibit the skewed data distribution More than 80% of entities with less than 5 degrees; KGE methods are easily misled towards remaining high-degree entities

Hierarchical structures are ubiquitous in SupKG (*Pistachio_Latte* \rightarrow *Coffee* \rightarrow *Drink*)

Method

Representation Learning of SupKG

Fine-grained Relation Pattern Preservation in SupKG with a Multi-task Component

Bridging Language Representations with Knowledge Structure in SupKG

Bridging Language Representations with Knowledge Structure in SupKG

Method Representation Learning of Super KG

Fine-grained Relation Pattern Preservation in SupKG with a Multi-task Component

Method Representation Learning of Super KG

Fine-grained Relation Pattern Preservation in SupKG with a Multi-task Component

Method Representation Learning of Super KG

Fine-grained Relation Pattern Preservation in SupKG with a Multi-task Component

✓ Heterogeneous and unstructured data source

	AliCoCo	AliCoCo2	SupKG
# Entity	57, 125	163, 460	17, 343, 492
# Relation type	2	91	88
# Relation instance	131, 968	813, 315	103, 526, 390

SupKG has to deal with a lot of vanilla text of rather multiplex and heterogeneous behaviors, covering city service, traveling, entertainment, health care, and so on

✓ Heterogeneous and unstructured data source

	AliCoCo	AliCoCo2	SupKG
# Entity	57, 125	163, 460	17, 343, 492
# Relation type	2	91	88
# Relation instance	131, 968	813, 315	103, 526, 390

SupKG has to deal with a lot of vanilla text of rather multiplex and heterogeneous behaviors, covering city service, traveling, entertainment, health care, and so on

✓ Distinct emphasis from e-commerce for relation extraction

(SupKG aims at answering "which service is needed at what time and where")

✓ Heterogeneous and unstructured data source

	AliCoCo	AliCoCo2	SupKG
# Entity	57, 125	163, 460	17, 343, 492
# Relation type	2	91	88
# Relation instance	131, 968	813, 315	103, 526, 390

SupKG has to deal with a lot of vanilla text of rather multiplex and heterogeneous behaviors, covering city service, traveling, entertainment, health care, and so on

✓ Distinct emphasis from e-commerce for relation extraction

(SupKG aims at answering "which service is needed at what time and where")

More powerful representation capability

Incorporating language representations in the information propagation process is a more reasonable way for complementing textual and structural information.

CL empowers the representation

	Hit@5	Hit@10	Hit@15	Hit@20	MRR
AliCoCo2	0.2298	0.2844	0.3009	0.3128	0.1693
OURS	0.2514	0.2958	0.3179	0.3403	0.1984

Table 7: Performance comparison with Alicoco2 on triplets < h, r, t > with semantic distance $\cos(h, t) \ge \delta$. Here h, t are semantic embedding from BERT for head and tail entities, respectively.

More optimization-friendly in learning hierarchy

	Hit@5	Hit@10	Hit@15	Hit@20	MRR
Ours-HyL	0.3339	0.4406	0.4900	0.5246	0.2487
OUS	0.3557	0.4446	0.4954	0.5310	0.2571

Table 8: Hyperbolic loss (*i.e.*, "Ours-HyL") versus polar coordinate system (*i.e.*, "OUS") in the proposed framework.

Overall performance

> Ablation study

Mathada		MDD			
Methous	K = 5	K = 10	K = 15	K = 20	MIKK
TransE [4]	0.2346	0.3145	0.3652	0.4019	0.1555
TransR [19]	0.1751	0.2247	0.2622	0.2916	0.1410
TransD [17]	0.2483	0.3068	0.3407	0.3638	0.1834
TransH [29]	0.2488	0.3071	0.3419	0.3667	0.1828
ConvE [10]	0.1658	0.2229	0.2718	0.3133	0.1234
RESCAL [22]	0.2825	0.3238	0.3487	0.3681	0.2206
BLP [9]	0.2299	0.3115	0.3613	0.3981	0.1515
HAKE [33]	0.2169	0.2541	0.2732	0.2871	0.1669
RGCN [24]	0.0675	0.0962	0.1189	0.1414	0.0526
KGNN [15]	0.1477	0.2187	0.2699	0.3128	0.1053
AliCoCo2 [20]	0.3402	0.4395	0.4705	0.4926	0.2433
OURS	0.3557	0.4446	0.4954	0.5310	0.2571

Table 3: Quantitative comparison of different methods.

		Hit@K				MDD		
11	GS	35 HL CL	K = 5	K = 10	K = 15	K = 20		
\checkmark		\checkmark		0.2605	0.3032	0.3319	0.3548	0.2095
	\checkmark	\checkmark	\checkmark	0.2576	0.3076	0.3408	0.3664	0.2014
\checkmark	\checkmark			0.2102	0.2897	0.3417	0.3822	0.1485
\checkmark	\checkmark	\checkmark		0.3341	0.4236	0.4786	0.5186	0.2462
\checkmark	\checkmark		✓	0.2359	0.3254	0.3826	0.4251	0.1651
\checkmark	✓	 ✓ 	✓	0.3557	0.4446	0.4954	0.5310	0.2571

Table 4: Ablation studies of our proposal. "TI" means textual information; "GS" means graph structure; "HL" means hierarchy aware learning module; "CL" means contrastive learning module.

- Our complete representation framework consistently and significantly surpasses all the baselines across all metrics in the industrial knowledge graph
- ✓ In the ablation study, we could observe an apparent performance decrease once the corresponding component is removed, indicating all signals considered play critical roles in high-quality learning

Source entity	Relation	Target entities retrieved
Musical instrument shop (乐器行)	scene_related_prod	Ukulele (乌克里里), Folk drum (民族鼓), Violin (小提琴), old records (老唱片) Percussion instrument (敲打乐器)
CBA	activity_need_prod	Basketball shoes (篮球鞋), Basketball (篮球), Sneaker (球鞋), Jersey (球衣)
Anti-inflammatory (消炎药)	prod_in_scene	Drugstore (药店), Fair-price drugstore (平价药店), TCM pharmacy (中药坊), Children's hospital (儿童医院), Community hospital (社区医院)
Bartending (调酒)	intent_related_food	Cocktail (鸡尾酒), Blueberry wine(蓝莓酒),Plum wine(青梅酒), Foreign wine(洋酒)
Family trip (亲子游)	intent_related_scene	Parent-child park(亲子乐园), Adventure park (探险乐园), wild animal park(野生动物园)

Supplementing 5 million potential knowledge through semantic and structural matching

(b) PV CTR

- ✓ We propose SupKG, a commonsense knowledge graph toward Super APP to help comprehensively characterize user behaviors across different business scenarios in a more fine-grained manner.
- ✓ We devise a novel representation learning framework, enabling various applications to draw support from effective representations of entities and relations from SupKG.
- ✓ We perform a series of offline/online to demonstrate that i) the proposed representation learning framework could substantially help supplement potential knowledge for SupKG; ii) the learned embedding and SupKG could well warm up various downstream by provide high-quality SupKG knowledge.

Thanks ! More details will be published in our paper

Commonsense Knowledge Graph towards Super APP and Its Applications in Alipay