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Abstract. Multi-task learning (MTL), which jointly tackles multiple
tasks through information sharing, has been widely applied to many
recommendation applications. Recently, current efforts targeted for rec-
ommendation focus on learning task relationships based on the Multi-
gate Mixture-of-Experts (MMoE) architecture with shared input fea-
tures (i.e., subtle feature engineering for user-item interaction). Recent
evidences suggest the Graph Neural Network (GNN) as a powerful com-
ponent in characterizing deep interaction context for recommendation,
greatly contributing to easing the data sparseness issue in online adver-
tising services. Hence, we make the first attempt to explore the GNN
towards multi-task recommendation, by designing Mixture of Graph en-
hanced Expert Networks (MoGENet). Specifically, we propose a novel
multi-channel graph neural network to jointly model high-order informa-
tion with the user-item bipartite graph as well as derived collaborative
similarity graphs for users and items. On the top of the learned deep
interaction context, a group of graph enhanced expert networks are in-
troduced for contributing to the multi-task recommendation in a coop-
erative manner. Experimental results on three real-world datasets show
that MoGENet consistently and significantly outperforms state-of-the-
art baselines across all target tasks.
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1 Introduction

The recent integration of multi-task learning into recommender systems (e.g.,
the Multi-gate Mixture-of-Experts (MMoE) architecture [13] and its variants [12,
19]) has demonstrated remarkable strength of comprehensively capturing users’
inherent preferences by jointly tackling multiple target behaviors (e.g., click and
conversion) [14, 26, 3, 10, 8, 25]. Unfortunately, its success hinges on the subtle
feature engineering and large amounts of labeled data, which are not always
easily available (i.e., the undesired data sparseness issue). Although knowledge
transfer among multiple tasks (i.e., click and conversion) could be effectively
captured by current multi-task recommendation methods, it is still infeasible to
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obtain enough training data and handcrafted features for long-tailed items in
industrial settings. With the increasingly available historical user-item interac-
tion records, characterizing the high-order user-item based connectivity and the
user (item) based collaborative similarity sheds some lights on easing the data
sparseness issue and facilitating multi-task recommendation.

While it is appealing to distill the connectivity and collaborative similar-
ity from interaction history for the multi-task recommendation, the solution
is non-trivial, with several challenges. (1) How to flexibly extract the most rele-
vant/important information for characterizing interaction? The high-order user-
item connectivity, as well as the collaborative similarity, is complicated. It is
imperative to design a unified module to produce expressive representations by
exploring and exploiting useful graph structural information in an automatic
manner. (2) How to effectively incorporate learned deep interaction context for
contributing to multi-task recommendation? The learned deep interaction con-
text is composed of different view (i.e., connectivity and similarity) based rep-
resentations , which drives us to develop a new architecture to incorporate such
information for the multi-task recommendation in a cooperative manner.

Recent evidences show that graph neural networks [28, 9, 21] have the ex-
cellent ability in structural feature learning and have been widely adopted in
recommender systems for characterizing interaction context [24, 31] and side in-
formation [2, 23]. Inspired by these works, we make the first attempt to investi-
gate the effectiveness of the graph neural network to multi-task recommendation
by designing Mixture of Graph enhanced Expert Networks (MoGENet) . For si-
multaneously capturing the high-order user-item based connectivity and the user
(item) based collaborative similarity, we propose a novel multi-channel graph
neural network (MGNN) module to flexibly learn the most relevant/important
information on the bipartite graph as well as derived collaborative similarity
graphs for users and items. Based on the learned deep interaction context, we
introduce graph enhanced expert networks, which are built upon the architecture
of MMoE to flexibly incorporate such context for contributing to the multi-task
recommendation. To well guide the learning process of MoGENet, we weigh the
loss of each task in an automatic manner and balance multiple parallel expert
networks for recommendation in a cooperative way. At last, we conduct extensive
experiments on a benchmark and two industrial datasets respectively to show
the superiorities of MoGENet.

2 The Proposed Method

In this section, we present MoGENet, a novel multi-task recommendation method
that leverages the deep interaction context with graph learning. The overall ar-
chitecture of MoGENet is illustrated in Fig. 1. We start with the construction of
the bipartite graph and derived collaborative similarity graphs based on histor-
ical user-item interaction records with the user set U and the item set I. Here,
each ⟨u, i⟩ is assigned K related labels (e.g., click and conversion in e-commerce
scenarios), denoted as yu,i. Formally, we define the user-item Bipartite Graph
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Fig. 1. The overall architecture of MoGENet, which consists of multi-channel graph
neural network module and graph enhance expert networks.

as G = {U , I, E} with the user set U and the item set I. Moreover, E ⊂ U ×I is
the edge set between U and I where eu,i = ei,u = 1 if and only if

∑K
k=1 y

k
u,i ≥ 1.

In order to effectively exploit deep interaction context for recommendation,
we further define collaborative similarity for users (items) with the similar click
(clicked) and purchase (purchased) history. Hence, we define the User based
Collaborative Similarity Graph as GU = {U , EU} with the user set U and
edge set EU ⊂ U × U . Here, eu,v = ev,u = sim(u, v) calculated by the common
interaction history of the users [27]. Analogously, we also denote the Item based
Collaborative Similarity Graph as GI .

2.1 Deep Interaction Context Exploitation with Multi-channel
Graph Neural Network

In order to take full advantage of the high-order connectivity in G and the col-
laborative similarity in GU and GI , we propose a Multi-channel Graph Neural
Network (MGNN) to effectively aggregate most informative neighbors in each
channel (i.e., graph). To avoid the over-parameterized issue, the proposed MGNN
applies graph learning on each channel with shared initial representations for
users and items. Specifically, we encode the feature vector (i.e., xu,xi) of user u
and item i into pu, qi ∈ Rd, which are shared in the following propagations and
aggregations with bipartite and collaborative similarity graphs.

MGNN Module In general, the underlying reason for the interaction between
target user u and item i is fairly complicated, which may be contributed by not
only the historical interaction records (i.e., G), but also the deep collaborative
similarity between users (i.e., GU ) and items (i.e., GI). Formally, let h0

u = hU,0u =
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pu and h0
i = hI,0i = qi be the first input layers for the MGNN module with

shared encoding for users and items. Subsequently, MGNN layers in each channel
can recursively propagate the connectivity or collaborative similarity in different
graphs by neighborhood aggregation. Here, we zoom into the detailed process as
below.

MGNN to capture the user-item collaborative connectivity in G.
Given the l-th layer input hl

u and hl
i for each user u and item i respectively, we

update the user and item representation hl+1
u and hl+1

i at the (l + 1)-th layer
with G as follows:

hl+1
u = f(hl

u, σ(W
∑

i∈N (u)

αu←ih
l
i)),

hl+1
i = f(hl

i, σ(W
∑

u∈N (i)

αi←uh
l
u)),

(1)

where σ(·) is the LeakyReLU activation function, W ∈ Rd×d is the weight
matrix for graph G, N (u) and N (i) is the neighbor set of user u and item i
in G, respectively. αu←i and αi←u are implemented by the emerging attention
mechanism [20], indicating how much information being propagated through
the connectivity u ← i and i ← u in G, respectively. f(·) aims to aggregate
the messages propagated from corresponding neighbors, which is implemented
as the LSTM-like operator, inspired by [29].

MGNN to capture the user (item) based collaborative similarity in
GU (GI). For each user u (item i), with its l-th layer representation hU,lu (hI,li ), the
updated representation hU,l+1

u (hI,l+1
i ) in GU (GI) can be calculated as follows:

hU,l+1
u = f(hU,lu , σ(WU

∑
u∈NU (u)

αu←uh
U,l
u )),

hI,l+1
i = f(hI,li , σ(WI

∑
i∈NI(i)

αi←ih
I,l
i )),

(2)

where WU ,WI ∈ Rd×d is the weight matrix for GU and GI , NU (u) and N I(i)
is the set of collaborative similar neighbors of user u and item i respectively, and
αu←u and αi←i controls the information propagation in GU and GI respectively.

Through propagation processes, MGNN refines the representations in each
channel (i.e., hl+1

u ,hl+1
i ,hU,l+1

u ,hI,l+1
i ) by aggregating most related information

from different graphs at the l-th layer.

2.2 Graph Enhanced Expert Network

In this part, we investigate into the integration of learned graph representation
for multi-task recommendation. As proved in previous works [13, 10, 17], the
design of expert networks guarantees the soft-parameter sharing for modeling
task relations and conflicts. Therefore, we build upon the architecture of multi-
gate of mixture-of-experts (MMoE) to incorporate graph learning for facilitating
multi-task recommendation.
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Intuitively, the interactions between users and items are facilitated with not
only the bipartite graph, but also corresponding collaborative similarity graphs.
Given a user-item pair ⟨u, i⟩, after L layers’ propagations, we obtain the final
graph representation list {hL

u ,h
L
i ,h

U,L
u ,hI,Li }, which jointly captures user pref-

erences and item attributes in different graphs. In order to take full advantage
of information derived from different graphs, we propose to apply the graph
representation interaction between user u and item i in a pair-wise manner.

Z = {κ(hL
u ,h

L
i ), κ(h

L
u ,h

I,L
i ), κ(hU,Lu ,hL

i ), κ(h
U,L
u ,hI,Li )}, (3)

where κ(·, ·) is the interaction function, which can be set as element-wise prod-
uct, concatenation or multi-layer perceptron, and the corresponding studies are
detailed in the experiment part.

In our study, for convenience, we let |Z| = N , which is also the number of
expert networks in our model. We denote our expert networks as {fn(·)}Nn=1,
and equip each task k with a separate gating network gk(·). The output of task
k is calculated as follows:

ok
u,i = vT

N∑
n=1

gk([xu || xi])n[f
n([xu || xi]) || Zn], (4)

where “||” is the concatenation operator and v is the weight vector for output.
Following the common strategies in previous related works [13, 10, 17], the n-
th expert network fn(·) is implemented as the identical multi-layer perceptron
with the LeakyReLU activation function, while the k-th gating network gk(·)
is implemented as the simple linear transformation of the input with a softmax
layer.

2.3 Model Learning

We guide the learning process of MoGENet by jointly optimizing multiple related
tasks. For the k-th task, we adopt the commonly used binary cross entropy as
the loss function. Hence, the main loss function can be formulated as follows:

Lmain =

K∑
k=1

Lk =

K∑
k=1

∑
⟨u,i⟩∈H

C(ŷku,i, yku,i), (5)

where C(·, ·) is the cross entropy function. Inspired by the idea of homoscedastic
uncertainty [6], we adaptively weigh the loss of each task during model training.
Specifically, following [7, 22], we learn a relative weight for each task with the
task-dependent uncertainty, and thus rewrite the above loss function as follows:

Lmain(Θ,Σ) =

K∑
k=1

Lk(θk, σk)

≈
K∑

k=1

∑
⟨u,i⟩∈H

(
1

σk2 C(ŷku,i, yku,i) + log(σk2)
)
,

(6)
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Algorithm 1 Model training for MoGENet
Require: Bipartite Graph G = {U , I, E}, historical user-item interaction records H =

{u, i, yu,i|u ∈ U , i ∈ I, yu,i ∈ {0, 1}K}, user features {xu|u ∈ U} and item features
{xi|i ∈ I}.

1: Obtain GU and GI from G through collaborative similarity.
2: Initialize {P,Q} and other global parameters (e.g., WU and WI) for the MGNN

module, and initialize {Θ,Σ} for graph enhanced expert networks.
3: while Not coverage do
4: Sample a batch of interaction records HB from H.
5: /**MGNN module**/
6: Collect L-hops neighbors for each users (or items) in HB over G,GU and GI ,

respectively.
7: Obtain initial representations for users and items in HB with shared encoding

in Eq. 2.
8: for l = 0; l < L do
9: Perform propagation in each channel (i.e., Eq. 3 ∼ 4).

10: end for
11: /**Graph enhanced expert networks.**/
12: Apply the graph representation interaction as Eq. 5.
13: for k = 1; k ≤ K do
14: Calculate ŷk

u,i according to Eq. 6.
15: end for
16: Perform back propagation w.r.t. L, i.e., Eq. 10.
17: end while

where Θ = {θk}Kk=1, Σ = {σk}Kk=1 is the parameter set and task uncertainty set
of MoGENet, respectively. Noting that log(σk2) serves as a regularizer to avoid
overfitting.

As mentioned above, MoGENet contains multiple parallel expert networks,
which is hoped to be beneficial to the final prediction in a cooperative manner [5,
16]. Hence, we propose an auxiliary cooperative loss to balance the load of each
parallel expert network.

Lco = −
∑
⟨u,i⟩∈H

K∑
k=1

N∑
n=1

N∑
m=n+1

gk(x̂u,i)ng
k(x̂u,i)m. (7)

By incorporating both of above losses together, the overall loss function for
our model is defined as follows:

L = Lmain + βLco + λ||Θ||2, (8)

where β, λ > 0 controls the cooperative loss and regularization term, respectively.

2.4 Discussion

Flexibility of MoGENet The proposed MoGENet is a flexible framework to
leverage graph structure for promoting multi-task recommendation. If we ignore
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the deep interaction context learned by the MGNN module, MoGENet degrades
into the typical MMoE model [13] without graph learning. On the other hand,
MoGENet can also naturally degrade into neural graph collaborative filtering
model [24] when the collaborative similarity and graph enhanced expert network
are overlooked. Moreover, MoGENet is also a general framework which can be
easily extended to incorporated more complicated graph structure (e.g., social
graphs and item knowledge graphs).

Efficient training for industrial application For efficient numerical com-
putation in the MGNN module, we follow the trick in [11] to perform attention
calculation in each channel. Hence, the complexity and storage are both linear
with the number of edges in each corresponding graph. In sum, the upper bound
of complexity for the MGNN module is O(|E|+|EU |+|EI |). In addition, we follow
the similar strategy in [4] to randomly collect multi-hop (i.e., L) neighbors for
each ⟨u, i⟩ pair in batch. Instead of the full graph, we feed the sub-graph orga-
nized by the sampled multi-hop neighbors into the MGNN module for training,
which endows MoGENet with excellent scalability for large-scale data in real-
world applications. The pseudocode of the training procedure for MoGENet is
detailed in Algorithm 1. Actually, MoGENet has been deployed in industrial ad-
vertising systems to support user-item interaction graphs, consisting of hundreds
of millions of nodes and edges.

3 Experiments

In this section, we conduct a series of experiments to evaluate the effectiveness
of MoGENet on industrial and public datasets, respectively. To sum up, we aim
to answer the following research questions:

– RQ1: Does our proposed model outperforms other state-of-the-art methods
on both industrial and public datasets.

– RQ2: How does our proposed MGNN module improve existing multi-task
recommendation methods.

– RQ3: How about the impact of key designs of MoGENet (i.e., interaction
function, loss function and graph enhanced experts).

Dataset and evaluation metrics We evaluate MoGENet on an industrial
Advertising dataset (extracted as Adv. A and Adv. B) and a public IJ-
CAI CUP 2015 dataset 1. The detailed descriptions of the three datasets
are summarized in Table 1. Following [33, 26], we adopt GAUC to measure the
recommendation performance, which is a more fine-grained metric and proved
to be more relevant to online performance. We also report RelaImpr [30, 18] to
measure the relative improvement of MoGENet over the best baseline. It is also
worthwhile to note 0.1% improvement w.r.t. GAUC is remarkable in industrial
scenarios.
1 https://ijcai-15.org/index.php/repeat-buyers-prediction-competition
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Adv. A Adv. B IJCAI CUP 2015
#Train 2.67× 106 2.18× 106 3.81× 106

#Test 1.45× 105 1.72× 105 9.69× 105

#Nodes / #Edges / #Attr. 3.01× 106 / 9.31× 107 / 93 1.07× 106 / 3.94× 106 / N.A.

Tasks Click/Conversion Favorite/Purchase
Table 1. Statistics of datasets used in experiments.

Dataset Adv. A Adv. B IJCAI CUP 2015

Task Click Conv. Click Conv. Favorite Purchase

MLP 0.7340 0.7818 0.7138 0.8018 0.6049 0.7449
NGCF 0.7383 0.7811 0.7207 0.8027 0.7431 0.7466

Shared-Bottom 0.7288 0.7857 0.7051 0.8015 0.6044 0.7462

Cross-Stitch 0.7314 0.7857 0.7108 0.8063 0.6049 0.7445

ESMM 0.7261 0.7862 0.7009 0.7970 0.6055 0.7448

MMoE 0.7288 0.7860 0.7092 0.8033 0.6013 0.7369

SNR-trans 0.7327 0.7889 0.7159 0.8059 0.6040 0.7416

CGC 0.7307 0.7862 0.7084 0.8012 0.6030 0.7402

MoGENet 0.7428** 0.8051** 0.7232** 0.8092* 0.7442* 0.7477*

RelaImpr v.s. Best 1.89% 5.61% 1.13% 0.42% 0.41% 0.44%
Table 2. Overall performance comparison w.r.t. GAUC (We underline the best per-
formance from the baselines for each comparison. We use “**(or *)” to indicate that
improvement of MoGENet over the best performance from the baselines based on paired
t-tests at the significance level of 0.01 (or 0.05).). “Conv.” is short for “Conversion".

Compared Methods We mainly consider two kinds of representative predic-
tion methods and corresponding variants:

– Single-task methods, which only contribute to one task with shared fea-
tures (i.e., MLP) or graph structure (i.e., NGCF2 [24]).

– Multi-task methods, which learn multiple task relationships (i.e., Shared-
Bottom [1], Cross-Stitch 3 [15], ESMM 4 [14], MMoE 5 [13], SNR-
trans 6 [12], CGC 7 [19]).

2 https://github.com/xiangwang1223/neuralgraphcollaborativef iltering.
3 https://github.com/helloyide/Cross-stitch -Networks-for-Multi-task-Learning.
4 https://github.com/qiaoguan/deep-ctr-predicti- on/tree/master/ESMM
5 https://github.com/drawbridge/keras-mmoe
6 https://github.com/tomtang110/Multitask
7 https://github.com/tomtang110/Multitask
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Dataset Adv. A Adv. B IJCAI CUP 2015

Task Click Conv. Click Conv. Favorite Purchase

Shared-Bottom 0.7288 0.7857 0.7051 0.8015 0.6044 0.7462
+ MGNN 0.7333↑ 0.7872↑ 0.7189↑ 0.8079↑ 0.7439↑ 0.7351↑

Cross-Stitch 0.7314 0.7857 0.7108 0.8063 0.6049 0.7445
+ MGNN 0.7309 0.7866↑ 0.7175↑ 0.8027 0.7378↑ 0.7457↑

ESMM 0.7261 0.7862 0.7009 0.7970 0.6055 0.7448
+ MGNN 0.7363↑ 0.7879↑ 0.7177↑ 0.8067↑ 0.7417↑ 0.7438

MMoE 0.7288 0.7860 0.7092 0.8033 0.6013 0.7369
+ MGNN 0.7370↑ 0.7880↑ 0.7140↑ 0.8035↑ 0.7314↑ 0.7329

SNR-trans 0.7327 0.7889 0.7159 0.8059 0.6040 0.7416
+ MGNN 0.7352↑ 0.7863 0.7185↑ 0.8021 0.7366↑ 0.7385

CGC 0.7307 0.7862 0.7084 0.8012 0.6030 0.7402
+ MGNN 0.7342↑ 0.7862 0.7147↑ 0.8046↑ 0.7373↑ 0.7314

Table 3. Performance comparison of different methods and their improved vari-
ants(i.e., + MGNN) on tree datasets. ↑ means that variants achieve the better perfor-
mance.

Dataset Adv. A Adv. B

Task Click Conversion Click Conversion

EP 0.7428 0.8051 0.7232 0.8092
CON 0.7400 0.7961 0.7194 0.8121
ADD 0.7436 0.7954 0.7190 0.8126
MLP 0.7430 0.7986 0.7250 0.8072

Table 4. Study of the interaction function κ(·, ·). EP: element-wise product; CON:
concatenation; ADD: Addition; MLP: multi-layer perceptron.

Implementation Details We implement all models in our experiments on pa-
rameter server based distributed learning systems [32], with the aims of scaling
up to large-scale datasets adopted in the paper. For fair comparison, we set
learning rate = 1e-4, regularizer = 1e-3, batch size = 256, embedding size = 64
and select Adam as optimizer for all models. Moreover, for MLP and ESMM, we
set the architecture as [512, 256, 128]. For NGCF, we follow the optimal archi-
tecture reported in the original paper with 2 layers graph neural network. For
Shared-Bottom, Cross-stitch, MMoE, SNR-trans and CGC, we set the number
of expert networks = 4, and set the architecture of each expert network as [32,
32] and each gate network as [16, 16]. For MoGENet, we follow same architec-
tures of expert networks and gate networks as MMoE, and set L = 2, β = 1e-6,
λ = 1e-3. It is worthwhile to that all parameters for the comparison methods
are optimized by using 10% training data as the validation set.
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Dataset Adv. A Adv. B

Task Click Conversion Click Conversion

i 0.7408 0.7940 0.7169 0.8098
i+ii 0.7424 0.7966 0.7180 0.8110
i+iii 0.7381 0.7877 0.7190 0.8084

i+ii+iii 0.7428 0.8051 0.7232 0.8092
Table 5. Study of the loss function. i: the original loss function; ii: the uncertain loss
function; iii: the auxiliary cooperative loss.

3.1 Performance Comparison (RQ1)

We show the overall performance of the compared methods on industrial and
public datasets in Table 2. Here, we have the following key observations:

– The proposed MoGENet model consistently and significantly achieves the
best performance over baselines in all cases. This result validates the ef-
fectiveness of MoGENet, benefiting from incorporating the deep interaction
context for multi-task recommendation with graph learning.

– Among baselines, multi-task methods outperform single-task methods in
most cases, which indicates the usefulness of learning task relations during
model training. This phenomenon is fairly obvious in the industrial dataset,
since the relation between Click and Conversion maybe stronger than Fa-
vorite and Purchase.

– It is worthwhile to note that NGCF, as a single-task method, works well
among these baselines. It indicates that graph structure plays a vital role in
recommendation task, which further inspires the development of MoGENet.

3.2 Effect of the MGNN module

To demonstrate the effectiveness of graph representations learned by our MGNN
module, we prepare a series of variants of above multi-task methods, which
simply take the output of the MGNN module as input.

As shown in Table 3, the variants of multi-task methods (i.e., + MGNN)
yield better performance than the base by a relatively large margin in most
cases, which is attributed to the useful graph structure learned by the MGNN
module. Nevertheless, our MoGENet provides a more principled mechanism for
combining graph learning and multi-task recommendation, and thus still out-
performs these variants.

3.3 Study of MoGENet

In this section, we conduct a series of ablation studies on MoGENet to investigate
the impact and rationality of the interaction function, loss function and graph
enhanced experts.
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Ablation study 1: interaction function. First of all, we investigate the
impact of the interaction function κ(·, ·) in Eq. 3. In particular, we equip our
MoGENet model with different interaction functions (i.e., element-wise prod-
uct (EP), concatenation (CON), addition (ADD) and multi-layer perceptron
(MLP)) and study the corresponding performance.

As shown in Table. 4, we find that MoGENet yields relatively superior per-
formance when the relatively simple interaction functions (i.e., element-wise
product and addition) are applied. A possible reason is that such an interaction
function seems enough to capture affinity between users and items, and also
increases the model representation ability. This observation is consistent with
previous findings in [24].
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Fig. 2. Study of the graph enhanced experts.

Ablation study 2: loss function. As mentioned above, we improve the (i)
original multi-task loss function (See Eq. 7) by (ii) incorporating task-dependent
uncertainty loss (See Eq. 8) and (iii) auxiliary cooperative loss (See Eq. 9), with
the aims of effectively learning relatedness and differences across multiple tasks.

As shown in Table. 5, we observe that the complete MoGENet (i.e., “i+ii+iii”)
achieves the best performance in most cases compared with other variants. It
demonstrates the rationality and effectiveness of the design of loss function,
which provides a more reasonable way to learn knowledge transfer among mul-
tiple tasks.

Ablation study 3: graph enhanced experts. Finally, we analysis the im-
pact of graph enhanced experts on the recommendation performance through
gradually incorporating them into the proposed model (See Eq. 3).

As illustrated in Fig. 2, we observe that the performance of MoGENet overall
improves with the incorporation of graph enhanced experts (as shown in Fig. 1
(b), we add experts from left to right). And the performance will drop a lot
without graph enhanced experts in most cases. These observations demonstrate
the effectiveness of graph learning for easing the data sparseness issue.
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4 Conclusion

In this paper, we proposed MoGENet, a novel graph learning enhanced multi-
gate mixture-of-experts framework for recommendation. We elaborately devel-
oped a MGNN module to jointly model the high-order connectivity and the
collaborative similarity. On the top of learned structural information, a group of
graph enhanced expert networks was introduced for contributing to multi-task
recommendation during end-to-end training. Extensive experimental results have
demonstrated the superiority of our model. As for future work, we will inves-
tigate into incorporating more complicated graph structures (e.g., knowledge
graphs and heterogeneous graphs) into our framework.
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