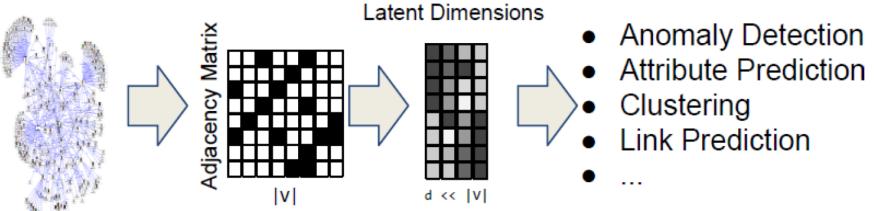

Heterogeneous Information Network Embedding for Recommendation

Trandition Recommendation

Matrix Factorization

Cold-start problem


HIN-based Recommendation

Limited ability of information extraction and exploitation

Network Embedding

Network Embedding

- Deepwalk
- Node2vec
- LINE
- SDNE
- •

- Towards homogeneous network.
- Limited ability to uncover complex semantics of HIN

17

Framework

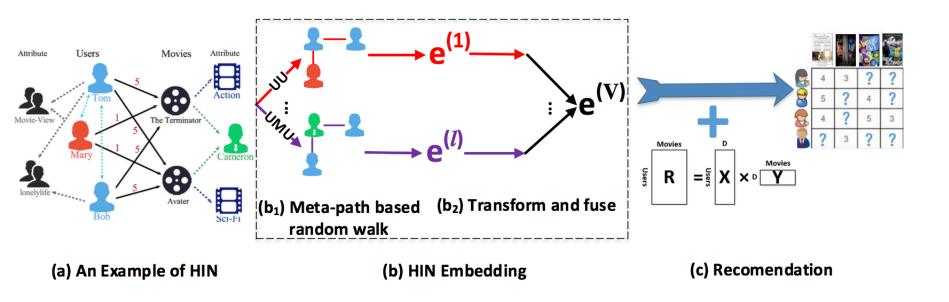
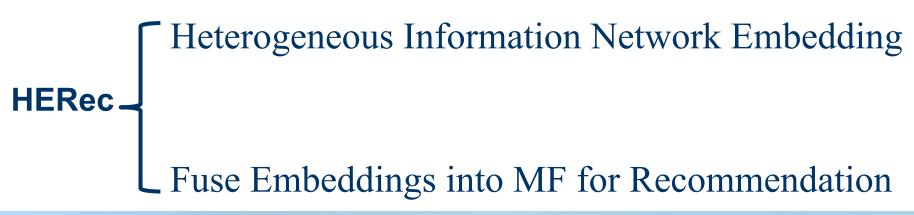



Figure 1: The schematic illustration of the proposed HERec approach.

HIN Embedding

User Movie Director

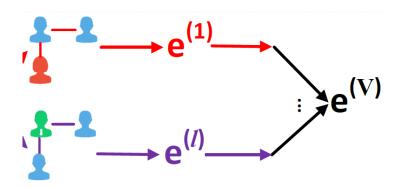
Metepath based random walk

Giving a heterogeneous network $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ and a metapath $\rho: A_1 \xrightarrow{R_1} \cdots A_t \xrightarrow{R_t} A_{t+1} \cdots \xrightarrow{R_l} A_{l+1}$, the walk path is generated according to the following distribution:

$$P(n_{t+1} = x | n_t = v, \rho)$$

$$= \begin{cases} \frac{1}{|\mathcal{N}^{A_{t+1}}(v)|}, & (v, x) \in \mathcal{E} \text{ and } \phi(x) = A_{t+1}; \\ 0, & \text{otherwise}, \end{cases}$$

Type Constraints and Filtering


- Uncover heterogeneous information with homogeneous NE objective
- Utilize more neighbor information with a fix-length window

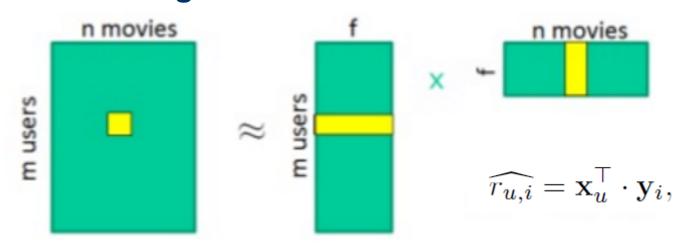
HIN Embedding

Embedding for single metapath

$$\max_{f} \sum_{u \in \mathcal{V}} \log Pr(\mathcal{N}_u | f(u)),$$

where $f: \mathcal{V} \to \mathbb{R}^a$ is a function (aiming to learn) maps each node to d-dimensional feature space, and $\mathcal{N}_u \subset \mathcal{V}$ represents the neighborhood of node u, w.r.t. to a specific metapath. We can learn the embedding mapping function $f(\cdot)$ by applying stochastic gradient descent (SGD) to optimize

Embedding Fusion


- Uncover different information of various metapaths
- A good fusion function should be learned according to the specific task

$$e_u^{(U)} \leftarrow g(\{e_u^{(l)}\}),$$

 $e_i^{(I)} \leftarrow g(\{e_i^{(l)}\}),$

Recommendation

Based Rating Prediction

Extended Rating Prediction

Integrated with HIN Embeddings

$$\widehat{r_{u,i}} = \mathbf{x}_u^{\top} \cdot \mathbf{y}_i + \alpha \cdot \mathbf{e}_u^{(U)}^{\top} \cdot \boldsymbol{\gamma}_i^{(I)} + \beta \cdot \boldsymbol{\gamma}_u^{(U)}^{\top} \cdot \mathbf{e}_i^{(I)}, \quad (5)$$

Recommendation

Fusion functions

• Simple linear fusion. We use a global set of meta-path transformation matrices to combine user embeddings

$$g(\{e_u^{(l)}\}) = \frac{1}{|\mathcal{P}|} \sum_{l=1}^{|\mathcal{P}|} (\mathbf{M}^{(l)} e_u^{(l)} + \boldsymbol{b}^{(l)}),$$
 (6)

Personalized linear fusion. The simple linear fusion cannot model users' personalized preference over the metapaths. So we further incorporate user-specific meta-path weights

$$g(\{\boldsymbol{e}_{u}^{(l)}\}) = \frac{1}{|\mathcal{P}|} \sum_{l=1}^{|\mathcal{P}|} w_{u}^{(l)}(\mathbf{M}^{(l)}\boldsymbol{e}_{u}^{(l)} + \boldsymbol{b}^{(l)}), \quad (7)$$

Personalized non-linear fusion. Linear fusion has limited expressive power in modeling complex data relations.
Hence, we use non-linear function to enhance the fusion ability

$$g(\lbrace \boldsymbol{e}_{u}^{(l)} \rbrace) = \sigma \left(\sum_{l=1}^{|\mathcal{P}|} w_{u}^{(l)} \sigma \left(\mathbf{M}^{(l)} \boldsymbol{e}_{u}^{(l)} + \boldsymbol{b}^{(l)} \right) \right), \quad (8)$$

Recommendation

Model Objective

$$\mathcal{L} = \sum_{\langle u, i, r_{u,i} \rangle \in \mathcal{R}} (r_{u,i} - \widehat{r_{u,i}})^2 + \lambda \sum_{u} (\|\mathbf{x}_u\|_2 + \|\mathbf{y}_i\|_2 + \|\boldsymbol{\gamma}_u^{(U)}\|_2 + \|\boldsymbol{\gamma}_i^{(I)}\|_2 + \|\boldsymbol{\Theta}^{(U)}\|_2 + \|\boldsymbol{\Theta}^{(I)}\|_2),$$
(9)

Model Learning

$$\Theta_{u,l}^{(U)} \leftarrow \Theta_{u,l}^{(U)} - \eta \cdot (-\alpha(r_{u,i} - \widehat{r_{u,i}}) \gamma_i^{(I)} \frac{\partial e_u^{(U)}}{\Theta_{u,l}^{(U)}} + \lambda_{\Theta} \Theta_{u,l}^{(U)}),$$

$$\gamma_u^{(U)} \leftarrow \gamma_u^{(U)} - \eta \cdot (-\beta(r_{u,i} - \widehat{r_{u,i}}) e_i^{(I)} + \lambda_{\gamma} \gamma_u^{(U)}).$$

We omit the learning of $\Theta_{i,l}^{(I)}$ and $\gamma_i^{(I)}$ due to the similar derivations.

Table 1: Statistics of the three datasets.

Dataset	Relations	Number	Number	Number	
(Density)	(A-B)	of A	of B	of (A-B)	
	User-Movie	13,367	12,677	1,068,278	
	User-User	2,440	2,294	4,085	
Douban	User-Group	13,337	2,753	570,047	
Movie (0.63%)	Movie-Director	10,179	2,449	11,276	
	Movie-Actor	11,718	6,311	33,587	
	Movie-Type	12,678	38	27,668	
	User-Book	13,024	22,347	792,026	
	User-User	12,748	12,748	169,150	
Douban	Book-Author	21,907	10,805	21,905 21,773	
Book	Book-Publisher	21,773	1,815		
(0.27%)	Book-Year	21,192	64	21,192	
	User-Business	16,239	14,284	198,397	
Yelp (0.08%)	User-User	10,580	10,580	158,590	
	User-Compliment	14,411	11	76,875	
	Business-City	14,267	47	14,267	
	Business-Category	14,180	511	40,009	

Metric and Settings

Metric

•
$$RMSE = \frac{\sqrt{\sum_{(u,i)\in R} (r_{u,i} - \hat{r}_{u,i})^2}}{|R|}$$

•
$$MAE = \frac{\sum_{(u,i)\in R} |r_{u,i} - \hat{r}_{u,i}|}{|R|}$$

Table 2: The selected meta-paths used in our work.

Dataset	Meta-paths			
Dauban Maria	UMU, UMDMU, UMAMU, UMTMU			
Douban Movie	MUM, MAM, MDM, MTM			
Douban Book	UBU, UBABU, UBPBU, UBYBU			
Douban Book	BUB, BPB, BYB			
Voln	UBU, UBCiBU, UBCaBU			
Yelp	BUB, BCiB, BCaB			

Compared Methods

Typical methods

- PMF
- SoMF

HIN-based Methods

- FM_{HIN}
- HeteMF
- SemRec
- DSR

NE-based methods

- HERec_{dw}
- HERec_{mp}

Variants of HERec

- HERec_{s1}
- HERec_{pl}
- HERec_{pnl}

Effectiveness Experiments

Table 3: Results of effectiveness experiments on three datasets. A smaller value indicates a better performance.

Table 5: Results of effectiveness experiments on three datasets. A smaller value indicates a better performance.													
Dataset	Training	Metrics	PMF	SoMF	FM_{HIN}	HeteMF	SemRec	DSR	$HERec_{dw}$	HERec _{mp}	HERec _{sl}	HERec_{pl}	HERec_{pnl}
Douban Movie	80%	MAE	0.5741	0.5817	0.5696	0.5750	0.5695	0.5681	0.5703	0.5515	0.5617	0.5523	0.5519
	00%	RMSE	0.7641	0.7680	0.7248	0.7556	0.7399	0.7225	0.7446	0.7121	0.7216	0.7024	0.7053
	60%	MAE	0.5867	0.5991	0.5769	0.5894	0.5738	0.5831	0.5838	0.5611	0.5711	0.5606	0.5587
		RMSE	0.7891	0.7950	0.7342	0.7785	0.7551	0.7408	0.7670	0.7264	0.7336	0.7142	0.7148
	40%	MAE	0.6078	0.6328	0.5871	0.6165	0.5945	0.6170	0.6073	0.5747	0.5832	0.5732	0.5699
		RMSE	0.8321	0.8479	0.7563	0.8221	0.7836	0.7850	0.8057	0.7429	0.7514	0.7334	0.7315
	20%	MAE	0.7247	0.6979	0.6080	0.6896	0.6392	0.6584	0.6699	0.6063	0.5953	0.5965	0.5900
		RMSE	0.9440	0.9852	0.7878	0.9357	0.8599	0.8345	0.9076	0.7877	0.7916	0.7674	0.7660
Douban Book	80%	MAE	0.5774	0.5756	0.5716	0.5740	0.5675	0.5740	0.5875	0.5591	0.5578	0.5556	0.5502
		RMSE	0.7414	0.7302	0.7199	0.7360	0.7283	0.7206	0.7450	0.7081	0.7079	0.7093	0.6811
	6001	MAE	0.6065	0.5603	0.5812	0.5823	0.5833	0.6020	0.6203	0.5666	0.5690	0.5669	0.5600
	60%	RMSE	0.7908	0.7518	0.7319	0.7466	0.7505	0.7552	0.7905	0.7318	0.7251	0.7274	0.7123
	40%	MAE	0.6800	0.6161	0.6028	0.5982	0.6025	0.6271	0.6976	0.5954	0.5838	0.5638	0.5774
		RMSE	0.9203	0.7936	0.7617	0.7779	0.7751	0.7730	0.9022	0.7703	0.7490	0.7549	0.7400
	20%	MAE	1.0344	0.6327	0.6396	0.6311	0.6481	0.6300	1.0166	0.6785	0.6232	0.6347	0.6450
		RMSE	1.4414	0.8236	0.8188	0.8304	0.8350	0.8200	1.3205	0.8869	0.8168	0.8382	0.8581
Yelp	90%	MAE	1.0412	1.0095	0.9013	0.9487	0.9043	0.9054	1.0388	0.8822	0.8643	0.8506	0.8395
		RMSE	1.4268	1.3392	1.1417	1.2549	1.1637	1.1186	1.3581	1.1309	1.1204	1.0948	1.0907
	80%	MAE	1.0791	1.0373	0.9038	0.9654	0.9176	0.9098	1.0750	0.8953	0.8789	0.8578	0.8475
		RMSE	1.4816	1.3782	1.1497	1.2799	1.1771	1.1208	1.4075	1.1516	1.1403	1.1139	1.1117
	70%	MAE	1.1170	1.0694	0.9108	0.9975	0.9407	0.9429	1.1196	0.9043	0.8889	0.8650	0.8580
		RMSE	1.5387	1.4201	1.1651	1.3229	1.2108	1.1582	1.4632	1.1639	1.1599	1.1229	1.1256
	60%	MAE	1.1778	1.1135	0.9435	1.0368	0.9637	1.0043	1.1691	0.9257	0.9042	0.8818	0.8759
		RMSE	1.6167	1.4748	1.2039	1.3713	1.2380	1.2257	1.5182	1.1887	1.1817	1.1451	1.1488
	Average Rank		10.33	8.79	5.25	7.83	6.54	6.13	9.5	4.17	3.2	2.4	1.79

Detailed Analysis

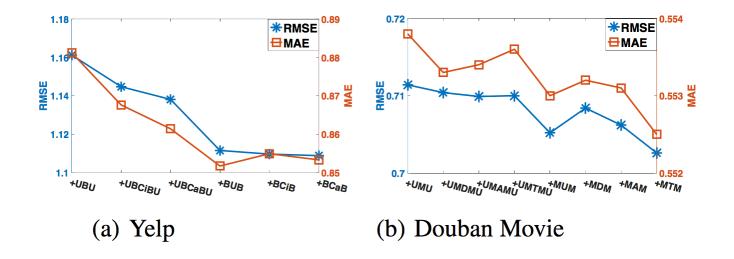


Figure 4: Performance change of HERec when gradually incorporating meta-paths.

Detailed Analysis

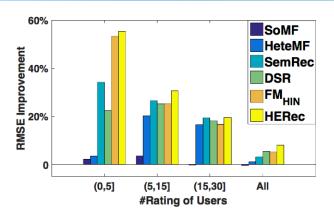


Figure 3: Performance comparison of different methods for cold-start prediction on Douban Movie dataset. *y*-axis denotes the improvement ratio over PMF.

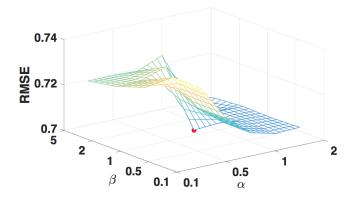


Figure 5: Varying parameters α and β on Douban Movie dataset.

谢谢

